Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 12"
m |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 36: | Line 36: | ||
Thus <math>[ABCD]=\frac{25\sqrt{143}}{18}\rightarrow\boxed{186}</math> | Thus <math>[ABCD]=\frac{25\sqrt{143}}{18}\rightarrow\boxed{186}</math> | ||
− | ==See | + | ==See Also== |
− | + | {{Mock AIME box|year=2006-2007|n=2|num-b=11|num-a=13}} | |
− | + | ||
− | |||
== Problem Source == | == Problem Source == | ||
AoPS users 4everwise and Altheman collaborated to create this problem. | AoPS users 4everwise and Altheman collaborated to create this problem. |
Latest revision as of 09:53, 4 April 2012
Contents
[hide]Problem
In quadrilateral and is defined to be the intersection of the diagonals of . If , and the area of is where are relatively prime positive integers, find
Note*: and refer to the areas of triangles and
Solution
is a cylic quadrilateral.
Let
~
Also, from the Power of a Point Theorem,
Notice
It is given
Note that
Then and
Thus we need to find
Note that is isosceles with sides so we can draw the altitude from D to split it to two right triangles.
Thus
See Also
Mock AIME 2 2006-2007 (Problems, Source) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |
Problem Source
AoPS users 4everwise and Altheman collaborated to create this problem.