Difference between revisions of "User talk:Baijiangchen"

Line 3: Line 3:
 
<math>W(0):=1</math>
 
<math>W(0):=1</math>
  
<math>W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1})</math>
+
<math>W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1}))</math>
  
 
Then:
 
Then:
  
 
<math>W(n)=(2n-1)!!</math>
 
<math>W(n)=(2n-1)!!</math>

Revision as of 23:21, 21 July 2012

If:

$W(0):=1$

$W(n):=\sum_{i=0}^{n-1}({n-1 \choose i}W(i)(x-i-1)!(2^{x-i-1}))$

Then:

$W(n)=(2n-1)!!$