Difference between revisions of "User talk:Baijiangchen"
Line 20: | Line 20: | ||
<math>=2x[W(n)=\sum_{i=1}^{x}(\binom{i-1}{x-1}W(i-1)(x-i)!(2^{x-i}))+\binom{x}{x-1}W(x)(1)!(2)]</math> | <math>=2x[W(n)=\sum_{i=1}^{x}(\binom{i-1}{x-1}W(i-1)(x-i)!(2^{x-i}))+\binom{x}{x-1}W(x)(1)!(2)]</math> | ||
<math>=2x[(2x-1)!!+\binom{x}{x-1}W(x)(1)!(2)]</math> | <math>=2x[(2x-1)!!+\binom{x}{x-1}W(x)(1)!(2)]</math> | ||
+ | And this is where I'm stuck. |
Revision as of 23:37, 21 July 2012
If:
Then:
Sam's stuff
Let
Assume that for some integer , . We intend to show that .
And this is where I'm stuck.