Difference between revisions of "2003 AMC 12B Problems/Problem 9"

(Created page with "Since <math>f</math> is a linear function with slope <math>m</math>, <cmath>m = \frac{f(6) - f(2)}{\Delta x} = \frac{12}{6 - 2} = 3</cmath> <cmath>f(12) - f(2) = m \Delta x = 4...")
 
Line 1: Line 1:
 +
== Problem 9 ==
 +
Let <math>f</math> be a linear function for which <math>f(6) - f(2) = 12.</math> What is <math>f(12) - f(2)?</math>
 +
 +
<math>
 +
\text {(A) } 12 \qquad \text {(B) } 18 \qquad \text {(C) } 24 \qquad \text {(D) } 30 \qquad \text {(E) } 36
 +
</math>
 +
 
Since <math>f</math> is a linear function with slope <math>m</math>,
 
Since <math>f</math> is a linear function with slope <math>m</math>,
  

Revision as of 19:41, 1 November 2012

Problem 9

Let $f$ be a linear function for which $f(6) - f(2) = 12.$ What is $f(12) - f(2)?$

$\text {(A) } 12 \qquad \text {(B) } 18 \qquad \text {(C) } 24 \qquad \text {(D) } 30 \qquad \text {(E) } 36$

Since $f$ is a linear function with slope $m$,

\[m = \frac{f(6) - f(2)}{\Delta x} = \frac{12}{6 - 2} = 3\]

\[f(12) - f(2) = m \Delta x = 4(12 - 2) = 30 \Rightarrow \text (D)\]