Difference between revisions of "Mathematicial notation"

m (a little LaTeXing)
(proofreading)
Line 2: Line 2:
  
  
<math>\displaystyle \mathbb{Z}</math>: the integers (a unique factorisation domain).
+
<math>\displaystyle \mathbb{Z}</math>: the integers (a unique factorization domain).
  
 
<math>\mathbb{N}</math>: the positive integers, meaning those $>0$.
 
<math>\mathbb{N}</math>: the positive integers, meaning those $>0$.
Line 12: Line 12:
 
<math>\mathbb{R}</math>: the reals (a field).
 
<math>\mathbb{R}</math>: the reals (a field).
  
<math>\mathbb{C}</math>: the complex numbers (a algebraically closed and complete field).
+
<math>\mathbb{C}</math>: the complex numbers (an algebraically closed and complete field).
  
<math>\mathbb{Q}_p</math>: the <math>p</math>-adic numbers (a complete field); also <math>\mathbb{Q}_0 : =\mathbb{Q}</math> and <math>\mathbb{Q}_\infty : = \mathbb{R}</math> is used sometimes.
+
<math>\mathbb{Q}_p</math>: the <math>p</math>-adic numbers (a complete field); also <math>\mathbb{Q}_0 : =\mathbb{Q}</math> and <math>\mathbb{Q}_\infty : = \mathbb{R}</math> are used sometimes.
  
 
<math>\mathbb{Z}_n = \mathbb{Z} / n \mathbb{Z}</math>: the residues <math>\mod n</math> (a ring; a field for <math>n</math> prime).
 
<math>\mathbb{Z}_n = \mathbb{Z} / n \mathbb{Z}</math>: the residues <math>\mod n</math> (a ring; a field for <math>n</math> prime).
  
 
When <math>M</math> is one of the sets from above, then <math>M^+</math> denotes the numbers <math>>0</math> (when defined), analogous for <math>M^-</math>.
 
When <math>M</math> is one of the sets from above, then <math>M^+</math> denotes the numbers <math>>0</math> (when defined), analogous for <math>M^-</math>.
The meaning of <math>M^*</math> will depend on <math>M</math>: for most cases it denotes the invertible elements, but for <math>\displaystyle \mathbb{Z}</math> it means the nonzero integers (note that this definitions coincide in most cases).
+
The meaning of <math>M^*</math> will depend on <math>M</math>: for most cases it denotes the invertible elements, but for <math>\displaystyle \mathbb{Z}</math> it means the nonzero integers (note that these definitions coincide in most cases).
 
A zero in the index, like in <math>M_0^+</math>, tells us that <math>0</math> is also included.
 
A zero in the index, like in <math>M_0^+</math>, tells us that <math>0</math> is also included.
  
Line 29: Line 29:
 
For a set <math>M</math>, <math>|M|=\# M</math> denotes the number of elements of <math>M</math>.
 
For a set <math>M</math>, <math>|M|=\# M</math> denotes the number of elements of <math>M</math>.
  
<math>a</math> divides <math>b</math> (both integers) is written as <math>a|b</math> or sometimes as <math>b \vdots a</math>.
+
<math>a</math> divides <math>b</math> (both integers) is written as <math>a|b</math>, or sometimes as <math>b \vdots a</math>.
 
Then for <math>m,n \in \mathbb{Z}</math>, <math>\gcd(m,n)</math>  or <math>(m,n)</math> is their '''greatest common divisor''', the greatest <math>d \in \mathbb{Z}</math> with <math>d|m</math> and <math>d|n</math> (<math>\gcd(0,0)</math> is defined as <math>0</math>) and <math>\mathrm{lcm}(m,n)</math> or <math>\left[ m,n\right]</math> denotes their [[least common multiple]], the smallest non-negative integer <math>d</math> such that <math>m|d</math> and <math>n|d</math>
 
Then for <math>m,n \in \mathbb{Z}</math>, <math>\gcd(m,n)</math>  or <math>(m,n)</math> is their '''greatest common divisor''', the greatest <math>d \in \mathbb{Z}</math> with <math>d|m</math> and <math>d|n</math> (<math>\gcd(0,0)</math> is defined as <math>0</math>) and <math>\mathrm{lcm}(m,n)</math> or <math>\left[ m,n\right]</math> denotes their [[least common multiple]], the smallest non-negative integer <math>d</math> such that <math>m|d</math> and <math>n|d</math>
 
.
 
.
 
When <math>\gcd(m,n)=1</math>, one often says that <math>m,n</math> are called "[[coprime]]".
 
When <math>\gcd(m,n)=1</math>, one often says that <math>m,n</math> are called "[[coprime]]".
  
For $n \in \mathbb{Z}^*$ to be "[b]squarefree[/b]" means that there is no integer $k>1$ with $k^2|n$. Equivalently, this means that no prime factor occurs more than once in the decomposition.
+
For $n \in \mathbb{Z}^*$ to be '''squarefree''' means that there is no integer $k>1$ with $k^2|n$. Equivalently, this means that no prime factor occurs more than once in the decomposition.
  
  

Revision as of 12:27, 27 June 2006

Sets

$\displaystyle \mathbb{Z}$: the integers (a unique factorization domain).

$\mathbb{N}$: the positive integers, meaning those $>0$.

$\mathbb{P}$: the positive primes.

$\mathbb{Q}$: the rationals (a field).

$\mathbb{R}$: the reals (a field).

$\mathbb{C}$: the complex numbers (an algebraically closed and complete field).

$\mathbb{Q}_p$: the $p$-adic numbers (a complete field); also $\mathbb{Q}_0 : =\mathbb{Q}$ and $\mathbb{Q}_\infty : = \mathbb{R}$ are used sometimes.

$\mathbb{Z}_n = \mathbb{Z} / n \mathbb{Z}$: the residues $\mod n$ (a ring; a field for $n$ prime).

When $M$ is one of the sets from above, then $M^+$ denotes the numbers $>0$ (when defined), analogous for $M^-$. The meaning of $M^*$ will depend on $M$: for most cases it denotes the invertible elements, but for $\displaystyle \mathbb{Z}$ it means the nonzero integers (note that these definitions coincide in most cases). A zero in the index, like in $M_0^+$, tells us that $0$ is also included.


Definitions

For a set $M$, $|M|=\# M$ denotes the number of elements of $M$.

$a$ divides $b$ (both integers) is written as $a|b$, or sometimes as $b \vdots a$. Then for $m,n \in \mathbb{Z}$, $\gcd(m,n)$ or $(m,n)$ is their greatest common divisor, the greatest $d \in \mathbb{Z}$ with $d|m$ and $d|n$ ($\gcd(0,0)$ is defined as $0$) and $\mathrm{lcm}(m,n)$ or $\left[ m,n\right]$ denotes their least common multiple, the smallest non-negative integer $d$ such that $m|d$ and $n|d$ . When $\gcd(m,n)=1$, one often says that $m,n$ are called "coprime".

For $n \in \mathbb{Z}^*$ to be squarefree means that there is no integer $k>1$ with $k^2|n$. Equivalently, this means that no prime factor occurs more than once in the decomposition.


[b]factorial[/b] of $n$: $n! : = n \cdot (n-1) \cdot (n-2) \cdot ... \cdot 3 \cdot 2 \cdot 1$ [b]binomial coefficients[/b]: $\binom{n}{k} = \frac{n!}{k! (n-k)!}$

For two functions $f,g: \mathbb{N} \to \mathbb{C}$ the [b]Dirichlet convolution[/b] $f*g$ is defined as $f*g(n) : = \sum_{d|n} f(d) g\left(\frac{n}{d}\right)$. A (weak) [b]multiplicative function[/b] $f: \mathbb{N} \to \mathbb{C}$ is one such that $f(a\cdot b) = f(a) \cdot f(b)$ for all $a,b \in \mathbb{N}$ with $\gcd(a,b)=1$. Some special types of such functions: [b]Euler's totient function[/b]: $\varphi (n) = \phi (n) : = \left| \{ k \in \mathbb{N} \ : \ k \leq n , \gcd(k,n) \} \right| = \left| \mathbb{Z}_n^* \right|$. [b]Möbius' function[/b]: $\mu(n): = {0 iff n is not squarefree(1)s where s is the number of prime factors of n otherwise$. [b]Sum of powers of divisors[/b]: $\sigma_k(n) : = \sum_{d|n} d^k$; often $\tau$ is used for $\sigma_0$, the number of divisors, and simply $\sigma$ for $\sigma_1$.

For any $k,n \in \mathbb{N}$ it denotes $r_k(n) : = \left| \{ (a_1,a_2,...,a_k) \in \mathbb{Z}^k | \sum a_i^2 = n \} \right|$ the [b]number of representations of $n$ as sum of $k$ squares[/b].

Let $a,n$ be coprime integers. Then $ord_n(a)$, the "[b]order of $a \mod n$[/b]" is the smallest $k \in \mathbb{N}$ with $a^k \equiv 1 \mod n$.

For $n \in \mathbb{Z}^*$ and $p \in \mathbb{P}$, the [b]$p$-adic valuation $v_p(n)$[/b] can be defined as the multiplicity of $p$ in the factorisation of $n$, and can be extended for $\frac{m}{n} \in \mathbb{Q}^* , \ m,n \in \mathbb{Z}^*$ by $v_p\left( \frac{m}{n} \right) = v_p(m)-v_p(n)$. Additionally often $v_p(0) = \infty$ is used.

For any function $f$ we define $\Delta (f)(x) : = f(x+1)-f(x)$ as the (upper) finite difference of $f$. Then we set $\Delta^0(f)(x) : = f(x)$ and then iteratively $\Delta^n (f) (x) : = \Delta(\Delta^{n-1} (f)) (x)$ for all integers $n \geq 1$.


[b]Legendre symbol:[/b] for $a \in \mathbb{Z}$ and odd $p \in \mathbb{P}$ we define $\left( \frac{a}{p} \right) : = {1 when x2amodp has a solution xZp0 iff p|a1 when x2amodp has no solution xZp$ Then the [b]Jacobi symbol[/b] for $a \in \mathbb{Z}$ and odd $n= \prod p_i^{v_i}$ (prime factorisation of $n$) is defined as: $\left( \frac{a}{n} \right) = \prod \left( \frac{a}{p_i} \right)^{v_i}$

[b]Hilbert symbol[/b]: let $v \in \mathbb{P} \cup \{ 0 , \infty \}$ and $a,b \in \mathbb{Q}_v^*$. Then \[ \left( a , b \right)_v : = {1 iff x2=ay2+bz2 has a nontrivial solution (x,y,z)Qv31 otherwise \] is the "Hilbert symbol of $a,b$ in respect to $v$" (nontrivial means here that not all numbers are $0$).


When $A \subset \mathbb{N}$, then we can define a [b]counting function[/b] $a(n) : = | \{ a \in A | a \leq n \}$. One special case of a counting function is the one that belongs to the primes $\mathbb{P}$, which is often called $\pi$. With counting functions, some types of densities can be defined:

Lower asymptotic density: $\displaystyle _Ld(A) : =\liminf_{n \to \infty} \frac{a(n)}{n}$

Upper asymptotic density: $\displaystyle _Ud(A) : =\limsup_{n \to \infty} \frac{a(n)}{n}$

Asymptotic density (does not always exist): $\displaystyle d(A) : =\lim_{n \to \infty} \frac{a(n)}{n}$

Shnirelman's density: $\displaystyle \sigma(A) : =\inf_{n \to \infty} \frac{a(n)}{n}$

Dirichlet's density(does not always exist): $\displaystyle \delta(A) : = \lim_{s \to 1+0} \frac{\sum_{a \in A} a^{-s}}{\sum_{a \in \mathbb{N}} a^{-s}}$

$\displaystyle {}_Ld(A)$ and $\displaystyle _Ud(A)$ are equal iff the asymptotic density $d(A)$ exists and all three are equal then and equal to Dirichlet's density.


Often, density is meant in relation to some other set $B$ (often the primes). Then we need $A \subset B \subset \mathbb{N}$ with counting functions $a,b$ and simply change $n$ into $b(n)$ and $\mathbb{N}$ into $B$:

Lower asymptotic density: $\displaystyle _Ld_B(A) : =\liminf_{n \to \infty} \frac{a(n)}{b(n)}$

Upper asymptotic density: $\displaystyle _Ud_B(A) : =\limsup_{n \to \infty} \frac{a(n)}{b(n)}$

Asymptotic density (does not always exist): $\displaystyle    d_B(A) : =\lim_{n \to \infty}{} \frac{a(n)}{b(n)}$

Shnirelman's density: $\displaystyle \sigma_B(A) : =\inf_{n \to \infty} \frac{a(n)}{b(n)}$

Dirichlet's density(does not always exist): $\displaystyle \delta_B(A) : = \lim_{s \to 1+0} \frac{\sum_{a \in A} a^{-s}}{\sum_{a \in B} a^{-s}}$

Again the same relations as above hold.