Difference between revisions of "2013 AMC 10A Problems/Problem 14"
Countingkg (talk | contribs) |
|||
Line 7: | Line 7: | ||
We can use Euler's polyhedron formula that says that <math>F+V=E+2</math>. We know that there are originally <math>6</math> faces on the cube, and each corner cube creates <math>3</math> more. <math>6+8(3) = 30</math>. In addition, each cube creates <math>7</math> new vertices while taking away the original <math>8</math>, yielding <math>8(7) = 56</math> vertices. Thus <math>E+2=56+30</math>, so <math>E=84</math>, <math>\textbf{(D)}</math> | We can use Euler's polyhedron formula that says that <math>F+V=E+2</math>. We know that there are originally <math>6</math> faces on the cube, and each corner cube creates <math>3</math> more. <math>6+8(3) = 30</math>. In addition, each cube creates <math>7</math> new vertices while taking away the original <math>8</math>, yielding <math>8(7) = 56</math> vertices. Thus <math>E+2=56+30</math>, so <math>E=84</math>, <math>\textbf{(D)}</math> | ||
+ | |||
+ | {{AMC10 box|year=2013|ab=A|num-b=13|num-a=15}} |
Revision as of 21:17, 7 February 2013
A solid cube of side length is removed from each corner of a solid cube of side length . How many edges does the remaining solid have?
Solution
We can use Euler's polyhedron formula that says that . We know that there are originally faces on the cube, and each corner cube creates more. . In addition, each cube creates new vertices while taking away the original , yielding vertices. Thus , so ,
2013 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |