Difference between revisions of "2004 AMC 8 Problems/Problem 9"

(Created page with "== Problem == The average of the five numbers in a list is <math>54</math>. The average of the first two numbers is <math>48</math>. What is the average of the last three numbers...")
 
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
 
numbers is <math>48</math>. What is the average of the last three numbers?
 
numbers is <math>48</math>. What is the average of the last three numbers?
  
<math> \mathrm{(A)\ 55 }\qquad\mathrm{(B)\ 56 }\qquad\mathrm{(C)\ 57 }\qquad\mathrm{(D)\ 58 }\qquad\mathrm{(E)\ 59 } </math>
+
<math>\textbf{(A)}\ 55 \qquad \textbf{(B)}\ 56 \qquad \textbf{(C)}\ 57 \qquad \textbf{(D)}\ 58 \qquad \textbf{(E)}\ 59</math>
  
 
== Solution ==
 
== Solution ==
Let the <math>5</math> numbers be <math>a, b, c, d</math>, and <math>e</math>. Thus <math>\frac{a+b+c+d+e}{5}=54</math> and <math>a+b+c+d+e=270</math>. Since <math>\frac{a+b}{2}=48</math>, <math>a+b=96</math>. Substituting back into our original equation, we have <math>96+c+d+e=270</math> and <math>c+d+e=174</math>. Dividing by <math>3</math> gives the average of <math>58</math> <math>\boxed{\textbf{(D)}\ 58}</math>
+
Let the <math>5</math> numbers be <math>a, b, c, d</math>, and <math>e</math>. Thus <math>\frac{a+b+c+d+e}{5}=54</math> and <math>a+b+c+d+e=270</math>. Since <math>\frac{a+b}{2}=48</math>, <math>a+b=96</math>. Substituting back into our original equation, we have <math>96+c+d+e=270</math> and <math>c+d+e=174</math>. Dividing by <math>3</math> gives the average of <math>\boxed{\textbf{(D)}\ 58}</math>.
 +
 
 +
==See Also==
 +
{{AMC8 box|year=2004|num-b=8|num-a=10}}
 +
{{MAA Notice}}

Latest revision as of 23:55, 4 July 2013

Problem

The average of the five numbers in a list is $54$. The average of the first two numbers is $48$. What is the average of the last three numbers?

$\textbf{(A)}\ 55 \qquad \textbf{(B)}\ 56 \qquad \textbf{(C)}\ 57 \qquad \textbf{(D)}\ 58 \qquad \textbf{(E)}\ 59$

Solution

Let the $5$ numbers be $a, b, c, d$, and $e$. Thus $\frac{a+b+c+d+e}{5}=54$ and $a+b+c+d+e=270$. Since $\frac{a+b}{2}=48$, $a+b=96$. Substituting back into our original equation, we have $96+c+d+e=270$ and $c+d+e=174$. Dividing by $3$ gives the average of $\boxed{\textbf{(D)}\ 58}$.

See Also

2004 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png