Difference between revisions of "1990 AHSME Problems/Problem 1"

(Solution)
m (Changed the value under the square root symbol from x to x^2.)
Line 8: Line 8:
 
Cross-multiplying leaves  
 
Cross-multiplying leaves  
  
<math><cmath> x28=8x2=64x=64x=±8 </cmath></math>
+
<math><cmath> \begin{align*}\dfrac{x^2}{8} &= 8\ x^2 &= 64\ \sqrt{x^2} &= \sqrt{64}\ x &= \pm 8\end{align*} </cmath></math>
  
 
So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>.
 
So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>.
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 03:03, 4 November 2013

Problem

If $\dfrac{x/4}{2}=\dfrac{4}{x/2}$, then $x=$

$\text{(A)}\ \pm\frac{1}{2}\qquad\text{(B)}\ \pm 1\qquad\text{(C)}\ \pm 2\qquad\text{(D)}\ \pm 4\qquad\text{(E)}\ \pm 8$

Solution

Cross-multiplying leaves

$<cmath> x28=8x2=64x2=64x=±8 </cmath>$ (Error compiling LaTeX. Unknown error_msg)

So the answer is $\boxed{\text{(E)} \, \pm 8}$. The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png