Difference between revisions of "1962 AHSME Problems/Problem 13"

(Created page with "==Problem== <math>R</math> varies directly as <math>S</math> and inverse as <math>T</math>. When <math>R = \frac{4}{3}</math> and <math>T = \frac {9}{14}</math>, <math>S = \frac3...")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
<math>R</math> varies directly as <math>S</math> and inverse as <math>T</math>. When <math>R = \frac{4}{3}</math> and <math>T = \frac {9}{14}</math>, <math>S = \frac37</math>. Find <math>S</math> when <math>R = \sqrt {48}</math> and <math>T = \sqrt {75}</math>.  
+
<math>R</math> varies directly as <math>S</math> and inverse as <math>T</math>. When <math>R = \frac{4}{3}</math> and <math>T = \frac {9}{14}</math>, <math>S = \frac37</math>. Find <math>S</math> when <math>R = \sqrt {48}</math> and <math>T = \sqrt {75}</math>.
 +
 
 +
<math> \textbf{(A)}\ 28\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60 </math>
  
 
==Solution==
 
==Solution==
 
"Unsolved"
 
"Unsolved"

Revision as of 21:37, 9 November 2013

Problem

$R$ varies directly as $S$ and inverse as $T$. When $R = \frac{4}{3}$ and $T = \frac {9}{14}$, $S = \frac37$. Find $S$ when $R = \sqrt {48}$ and $T = \sqrt {75}$.

$\textbf{(A)}\ 28\qquad\textbf{(B)}\ 30\qquad\textbf{(C)}\ 40\qquad\textbf{(D)}\ 42\qquad\textbf{(E)}\ 60$

Solution

"Unsolved"