Difference between revisions of "2014 AMC 12A Problems/Problem 23"

(Solution)
(Solution 2)
Line 8: Line 8:
 
\textbf{(E) }892\qquad</math>
 
\textbf{(E) }892\qquad</math>
  
== Solution ==
+
==Solution 1==
  
 
the fraction <math>\dfrac{1}{99}</math> can be written as <cmath>\sum^{\infty}_{n=1}\dfrac{1}{10^{2n}}</cmath>.
 
the fraction <math>\dfrac{1}{99}</math> can be written as <cmath>\sum^{\infty}_{n=1}\dfrac{1}{10^{2n}}</cmath>.
Line 19: Line 19:
 
and we can easily compute the sum of the digits from 0 to 99 to be <cmath>45\cdot10\cdot2=900</cmath> subtracting the sum of the digits of 98 which is 17 we get
 
and we can easily compute the sum of the digits from 0 to 99 to be <cmath>45\cdot10\cdot2=900</cmath> subtracting the sum of the digits of 98 which is 17 we get
 
<cmath>900-17=883\textbf{(B) }\qquad</cmath>
 
<cmath>900-17=883\textbf{(B) }\qquad</cmath>
 +
 +
==Solution 2==
 +
 +
<math>\frac{1}{99^2}\\
 +
=\frac{1}{99} \cdot \frac{1}{99}\\
 +
=\frac{0.\overline{01}}{99}</math>
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2014|ab=A|num-b=22|num-a=24}}
 
{{AMC12 box|year=2014|ab=A|num-b=22|num-a=24}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:41, 15 February 2014

Problem

The fraction \[\dfrac1{99^2}=0.\overline{b_{n-1}b_{n-2}\ldots b_2b_1b_0},\] where $n$ is the length of the period of the repeating decimal expansion. What is the sum $b_0+b_1+\cdots+b_{n-1}$?

$\textbf{(A) }874\qquad \textbf{(B) }883\qquad \textbf{(C) }887\qquad \textbf{(D) }891\qquad \textbf{(E) }892\qquad$

Solution 1

the fraction $\dfrac{1}{99}$ can be written as \[\sum^{\infty}_{n=1}\dfrac{1}{10^{2n}}\]. similarly the fraction $\dfrac{1}{99^2}$ can be written as $\sum^{\infty}_{m=1}\dfrac{1}{10^{2m}}\sum^{\infty}_{n=1}\dfrac{1}{10^{2n}}$ which is equivalent to \[\sum^{\infty}_{m=1}\sum^{\infty}_{n=1} \dfrac{1}{10^{2(m+n)}}\] and we can see that for each $n+m=k$ there are $k-1$ $(n,m)$ combinations so the above sum is equivalent to: \[\sum^{\infty}_{k=2}\dfrac{k-1}{10^{2k}}\] we note that the sequence starts repeating at $k = 102$ yet consider \[\sum^{101}_{k=99}\dfrac{k-1}{10^{2k}}=\dfrac{98}{{10^{198}}}+\dfrac{99}{{10^{200}}}+\dfrac{100}{10^{{202}}}=\dfrac{1}{10^{198}}(98+\dfrac{99}{100}+\dfrac{100}{10000})=\dfrac{1}{10^{198}}(98+\dfrac{99}{100}+\dfrac{1}{100})=\dfrac{1}{10^{198}}(98+\dfrac{100}{100})=\dfrac{1}{10^{198}}(99)\] so the decimal will go from 1 to 99 skipping the number 98 and we can easily compute the sum of the digits from 0 to 99 to be \[45\cdot10\cdot2=900\] subtracting the sum of the digits of 98 which is 17 we get \[900-17=883\textbf{(B) }\qquad\]

Solution 2

$\frac{1}{99^2}\\\\ =\frac{1}{99} \cdot \frac{1}{99}\\\\ =\frac{0.\overline{01}}{99}$

See Also

2014 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png