Difference between revisions of "User:DanielL2000"

(Problems)
 
(7 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
== Problems ==
 
== Problems ==
1.
+
1. Find all positive integer solutions <math> x, y, z</math> of the equation <math> 3^x \plus{} 4^y \equal{} 5^z.</math> ''(IMO Shortlist 1991)''
 +
 
 +
2. Find the number of integers <math>n</math> such that <cmath>1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.</cmath> ''(Harvard-MIT Math Tournament)''
 +
 
 +
3. Compute <cmath>\sum_{a_1=0}^\infty\sum_{a_2=0}^\infty\cdots\sum_{a_7=0}^\infty\dfrac{a_1+a_2+\cdots+a_7}{3^{a_1+a_2+\cdots+a_7}}.</cmath> ''(Harvard-MIT Math Tournament)''
 +
 
 +
4.
 +
Let <math>x,y,z</math> be positive real numbers such that <math> xy+yz+zx\geq3 </math>. Prove that<math> \frac{x}{\sqrt{4x+5y}}+\frac{y}{\sqrt{4y+5z}}+\frac{z}{\sqrt{4z+5x}}\geq1 </math>
 +
 
 +
== Online Math Circle ==
 +
 
 +
Go to the OMC or Online Math Circle at:
 +
 
 +
newyorkmathcircle.weebly.com
 +
 
 +
== Q&A ==
 +
Edit the article here:
 +
 
 +
----
 +
 
 +
Ex:
 +
Q: PI IS TASTY
 +
A: Yes it is
 +
 
 +
----

Latest revision as of 16:18, 22 February 2014

The home of DL2000

Problems

1. Find all positive integer solutions $x, y, z$ of the equation $3^x \plus{} 4^y \equal{} 5^z.$ (Error compiling LaTeX. Unknown error_msg) (IMO Shortlist 1991)

2. Find the number of integers $n$ such that \[1+\left\lfloor\dfrac{100n}{101}\right\rfloor=\left\lceil\dfrac{99n}{100}\right\rceil.\] (Harvard-MIT Math Tournament)

3. Compute \[\sum_{a_1=0}^\infty\sum_{a_2=0}^\infty\cdots\sum_{a_7=0}^\infty\dfrac{a_1+a_2+\cdots+a_7}{3^{a_1+a_2+\cdots+a_7}}.\] (Harvard-MIT Math Tournament)

4. Let $x,y,z$ be positive real numbers such that $xy+yz+zx\geq3$. Prove that$\frac{x}{\sqrt{4x+5y}}+\frac{y}{\sqrt{4y+5z}}+\frac{z}{\sqrt{4z+5x}}\geq1$

Online Math Circle

Go to the OMC or Online Math Circle at:

newyorkmathcircle.weebly.com

Q&A

Edit the article here:


Ex: Q: PI IS TASTY A: Yes it is