Difference between revisions of "2013 USAJMO Problems/Problem 6"
(→Solution with Thought Process) |
(→Solution with Thought Process) |
||
Line 4: | Line 4: | ||
Suppose x = y = z. Then <math>\sqrt{x + x^3} = 3\sqrt{x-1}</math>, so <math>x + x^3 = 9x - 9</math>. It is easily verified that <math>x^3 - 8x + 9 = 0</math> has no solution in positive numbers greater than 1. Thus, <math>\sqrt{x + xyz} \ge \sqrt{x - 1} + \sqrt{y - 1} + \sqrt{z - 1}</math> for x = y = z. We suspect if the inequality always holds. | Suppose x = y = z. Then <math>\sqrt{x + x^3} = 3\sqrt{x-1}</math>, so <math>x + x^3 = 9x - 9</math>. It is easily verified that <math>x^3 - 8x + 9 = 0</math> has no solution in positive numbers greater than 1. Thus, <math>\sqrt{x + xyz} \ge \sqrt{x - 1} + \sqrt{y - 1} + \sqrt{z - 1}</math> for x = y = z. We suspect if the inequality always holds. | ||
− | Let x = 1. Then we have <math>\sqrt{1 + yz} \ge \sqrt{y-1} + \sqrt{z-1}</math>, which simplifies to <cmath>1 + yz \ge y + z - 2 + 2\sqrt{(y-1)(z-1)}</cmath> and hence <cmath>yz - y - z + 3 \ge 2\sqrt{(y-1)(z-1)}</cmath> Let us try a few examples: if y = z = 2, we have <math>3 > 2</math>; if y = z, we have <math>y^2 - 2y + 3 \ge 2(y-1)</math>, which reduces to <math>y^2 - 4y + 5 \ge 0</math>. The discriminant (16 - 20) is negative, so in fact the inequality is strict. Now notice that yz - y - z + 3 = (y-1)(z-1) + 2. Now we see we can let <math>u = \sqrt{(y-1)(z-1)}</math>! Thus, <cmath>u^2 - 2u + 2 = (u-1)^2 + 1 > 0</cmath> | + | Let x = 1. Then we have <math>\sqrt{1 + yz} \ge \sqrt{y-1} + \sqrt{z-1}</math>, which simplifies to <cmath>1 + yz \ge y + z - 2 + 2\sqrt{(y-1)(z-1)}</cmath> and hence <cmath>yz - y - z + 3 \ge 2\sqrt{(y-1)(z-1)}</cmath> Let us try a few examples: if y = z = 2, we have <math>3 > 2</math>; if y = z, we have <math>y^2 - 2y + 3 \ge 2(y-1)</math>, which reduces to <math>y^2 - 4y + 5 \ge 0</math>. The discriminant (16 - 20) is negative, so in fact the inequality is strict. Now notice that yz - y - z + 3 = (y-1)(z-1) + 2. Now we see we can let <math>u = \sqrt{(y-1)(z-1)}</math>! Thus, <cmath>u^2 - 2u + 2 = (u-1)^2 + 1 > 0</cmath> and the claim holds for x = 1. |
If x > 1, we see the <math>\sqrt{x - 1}</math> will provide a huge obstacle when squaring. But, using the identity <math>(x+y+z)^2 = x^2 + y^2 + z^2 + xy + yz + xz</math>: | If x > 1, we see the <math>\sqrt{x - 1}</math> will provide a huge obstacle when squaring. But, using the identity <math>(x+y+z)^2 = x^2 + y^2 + z^2 + xy + yz + xz</math>: | ||
Line 10: | Line 10: | ||
which leads to | which leads to | ||
<cmath>xyz \ge y + z - 3 + 2\sqrt{(x-1)(y-1)} + 2\sqrt{(y-1)(z-1)} + 2\sqrt{(x-1)(z-1)}</cmath> | <cmath>xyz \ge y + z - 3 + 2\sqrt{(x-1)(y-1)} + 2\sqrt{(y-1)(z-1)} + 2\sqrt{(x-1)(z-1)}</cmath> | ||
− | Again, we experiment. If x = 2, y = 3, and z = 3, then <math>18 > | + | Again, we experiment. If x = 2, y = 3, and z = 3, then <math>18 > 7 + 4\sqrt{6}</math>. |
Now, we see the finish: setting <math>u = \sqrt{x-1}</math> gives <math>x = u^2 + 1</math>. We can solve a quadratic in u! Because this problem is a #6, the crown jewel of USAJMO problems, we do not hesitate in computing the messy computations: | Now, we see the finish: setting <math>u = \sqrt{x-1}</math> gives <math>x = u^2 + 1</math>. We can solve a quadratic in u! Because this problem is a #6, the crown jewel of USAJMO problems, we do not hesitate in computing the messy computations: | ||
Line 17: | Line 17: | ||
Because u > 0, all we need to do is to verify that the discriminant is nonpositive: | Because u > 0, all we need to do is to verify that the discriminant is nonpositive: | ||
<cmath>b^2 - 4ac = 4(y-1) + 4(z-1) - 8\sqrt{(y-1)(z-1)} - yz(12 - 4yz + 4y + 4z + 8\sqrt{(y-1)(z-1)})</cmath> | <cmath>b^2 - 4ac = 4(y-1) + 4(z-1) - 8\sqrt{(y-1)(z-1)} - yz(12 - 4yz + 4y + 4z + 8\sqrt{(y-1)(z-1)})</cmath> | ||
− | + | <prove that discriminant is negative> | |
Success! The discriminant is negative. Thus, we can replace our claim with a strict one, and there are <math>\boxed{no real solutions}</math> to the original equation in the hypothesis. | Success! The discriminant is negative. Thus, we can replace our claim with a strict one, and there are <math>\boxed{no real solutions}</math> to the original equation in the hypothesis. | ||
--Thinking Process by suli | --Thinking Process by suli |
Revision as of 10:42, 14 April 2014
Solution with Thought Process
Without loss of generality, let . Then .
Suppose x = y = z. Then , so . It is easily verified that has no solution in positive numbers greater than 1. Thus, for x = y = z. We suspect if the inequality always holds.
Let x = 1. Then we have , which simplifies to and hence Let us try a few examples: if y = z = 2, we have ; if y = z, we have , which reduces to . The discriminant (16 - 20) is negative, so in fact the inequality is strict. Now notice that yz - y - z + 3 = (y-1)(z-1) + 2. Now we see we can let ! Thus, and the claim holds for x = 1.
If x > 1, we see the will provide a huge obstacle when squaring. But, using the identity : which leads to Again, we experiment. If x = 2, y = 3, and z = 3, then .
Now, we see the finish: setting gives . We can solve a quadratic in u! Because this problem is a #6, the crown jewel of USAJMO problems, we do not hesitate in computing the messy computations:
Because u > 0, all we need to do is to verify that the discriminant is nonpositive: <prove that discriminant is negative> Success! The discriminant is negative. Thus, we can replace our claim with a strict one, and there are to the original equation in the hypothesis. --Thinking Process by suli