Difference between revisions of "1995 IMO Problems/Problem 2"
(→Solution 3) |
m (→Solution 4) |
||
Line 44: | Line 44: | ||
<cmath> (x + y + y + z + x + z) (\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y}) \ge (x + y + z)^2 </cmath> | <cmath> (x + y + y + z + x + z) (\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y}) \ge (x + y + z)^2 </cmath> | ||
by Cauchy-Schwarz, and so dividing by <math>2(x + y + z)</math> gives | by Cauchy-Schwarz, and so dividing by <math>2(x + y + z)</math> gives | ||
− | <cmath> \begin{align*}\frac{x^2}{y+z} + \frac{y^2}{z+x} + \frac{z^2}{x+y} | + | <cmath> |
as desired. | as desired. | ||
Revision as of 21:57, 21 April 2014
Contents
[hide]Problem
(Nazar Agakhanov, Russia) Let be positive real numbers such that . Prove that
Solution
Solution 1
We make the substitution , , . Then Since and are similarly sorted sequences, it follows from the Rearrangement Inequality that By the Power Mean Inequality, Symmetric application of this argument yields Finally, AM-GM gives us as desired.
Solution 2
We make the same substitution as in the first solution. We note that in general, It follows that and are similarly sorted sequences. Then by Chebyshev's Inequality, By AM-GM, , and by Nesbitt's Inequality, The desired conclusion follows.
Solution 3
Without clever substitutions: By Cauchy-Schwarz, Dividing by gives by AM-GM.
Solution 4
Proceed as in Solution 1, to arrive at the equivalent inequality But we know that by AM-GM. Furthermore, by Cauchy-Schwarz, and so dividing by gives as desired.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.