Difference between revisions of "2006 IMO Problems/Problem 1"
(Created page with "==Problem== Let <math>ABC</math> be triangle with incenter <math>I</math>. A point <math>P</math> in the interior of the triangle satisfies <math>\angle PBA+\angle PCA = \angle P...") |
|||
Line 2: | Line 2: | ||
Let <math>ABC</math> be triangle with incenter <math>I</math>. A point <math>P</math> in the interior of the triangle satisfies <math>\angle PBA+\angle PCA = \angle PBC+\angle PCB</math>. Show that <math>AP \geq AI</math>, and that equality holds if and only if <math>P=I</math> | Let <math>ABC</math> be triangle with incenter <math>I</math>. A point <math>P</math> in the interior of the triangle satisfies <math>\angle PBA+\angle PCA = \angle PBC+\angle PCB</math>. Show that <math>AP \geq AI</math>, and that equality holds if and only if <math>P=I</math> | ||
− | ==Solution==. | + | ==Solution== |
+ | . |
Revision as of 22:12, 22 May 2014
Problem
Let be triangle with incenter . A point in the interior of the triangle satisfies . Show that , and that equality holds if and only if
Solution
.