Difference between revisions of "1994 AHSME Problems/Problem 1"
m (LaTeX is FAT) |
|||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
− | Note that <math>a^x\times a^y=a^{x+y}</math>. So <math>4^4\cdot 4^9=4^13</math> and <math>9^4\cdot 9^9=9^13</math>. Therefore, <math>4^13\cdot 9^13=(4\cdot 9)^13=\boxed{\textbf{(C)}\ 36^{13}}</math>. | + | Note that <math>a^x\times a^y=a^{x+y}</math>. So <math>4^4\cdot 4^9=4^{13}</math> and <math>9^4\cdot 9^9=9^{13}</math>. Therefore, <math>4^{13}\cdot 9^{13}=(4\cdot 9)^{13}=\boxed{\textbf{(C)}\ 36^{13}}</math>. |
--Solution by [[User:TheMaskedMagician|TheMaskedMagician]] 23:04, 27 June 2014 (EDT) | --Solution by [[User:TheMaskedMagician|TheMaskedMagician]] 23:04, 27 June 2014 (EDT) |
Revision as of 22:05, 27 June 2014
Problem
Solution
Note that . So and . Therefore, .
--Solution by TheMaskedMagician 23:04, 27 June 2014 (EDT)