Difference between revisions of "1994 AHSME Problems/Problem 6"

(Created page with "==Problem== In the sequence <cmath> ..., a, b, c, d, 0, 1, 1, 2, 3, 5, 8,... </cmath> each term is the sum of the two terms to its left. Find <math>a</math>. <math> \textbf{(A)}...")
 
(Solution)
Line 6: Line 6:
 
<math> \textbf{(A)}\ -3 \qquad\textbf{(B)}\ -1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 3 </math>
 
<math> \textbf{(A)}\ -3 \qquad\textbf{(B)}\ -1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 3 </math>
 
==Solution==
 
==Solution==
 +
We work backwards to find <math>a</math>.
 +
 +
<cmath>\begin{align*}d+0=1&\implies d=1\ c+1=0&\implies c=-1\ b+(-1)=1&\implies b=2\ a+2=-1&\implies a=\boxed{\textbf{(A) }-3.}</cmath>
 +
 +
--Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician]

Revision as of 14:17, 28 June 2014

Problem

In the sequence \[..., a, b, c, d, 0, 1, 1, 2, 3, 5, 8,...\] each term is the sum of the two terms to its left. Find $a$.

$\textbf{(A)}\ -3 \qquad\textbf{(B)}\ -1 \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ 1 \qquad\textbf{(E)}\ 3$

Solution

We work backwards to find $a$.

\begin{align*}d+0=1&\implies d=1\\ c+1=0&\implies c=-1\\ b+(-1)=1&\implies b=2\\ a+2=-1&\implies a=\boxed{\textbf{(A) }-3.} (Error compiling LaTeX. Unknown error_msg)

--Solution by TheMaskedMagician