Difference between revisions of "1997 USAMO Problems/Problem 5"

(Solution 2)
m (Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Prove that, for all positive real numbers <math>a, b, c,</math>
 
 
<math>(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}</math>.
 
 
 
Prove that, for all positive real numbers <math>a, b, c,</math>
 
Prove that, for all positive real numbers <math>a, b, c,</math>
  

Revision as of 01:41, 18 July 2014

Problem

Prove that, for all positive real numbers $a, b, c,$

$(a^3+b^3+abc)^{-1}+(b^3+c^3+abc)^{-1}+(a^3+c^3+abc)^{-1}\le(abc)^{-1}$.

Solution

USAMO97(5-solution).jpg

Solution 2

Outline:

1. Because the inequality is homogenous, scale $a, b, c$ by an arbitrary factor such that $abc = 1$.

2. Replace all $abc$ with 1. Then, multiply both sides by $(a^3 + b^3 + 1)(b^3 + c^3 + 1)(a^3 + c^3 + 1)$ to clear the denominators.

3. Expand each product of trinomials.

4. Cancel like mad.

5. You are left with $a^3 + a^3 + b^3 + b^3 + c^3 + c^3 \le a^6b^3 + a^6c^3 + b^6c^3 + b^6a^3 + c^6a^3 + c^6b^3$. Homogenize the inequality by multiplying each term of the LHS by $a^2b^2c^2$. Because $(6, 3, 0)$ majorizes $(5, 2, 2)$, this inequality holds true by bunching. (Alternatively, one sees the required AM-GM is $\frac{a^6b^3 + a^6b^3 + a^3c^6}{3} \ge a^5b^2c^2$. Sum similar expressions to obtain the desired result.)

See Also

1997 USAMO (ProblemsResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png