Difference between revisions of "1994 AHSME Problems/Problem 12"

(Solution)
m (Solution)
Line 5: Line 5:
 
==Solution==
 
==Solution==
 
We simplify step by step as follows: <cmath>(ii1)1=1ii1=1i1i=1(i21i)=ii21=(D) i2.</cmath>
 
We simplify step by step as follows: <cmath>(ii1)1=1ii1=1i1i=1(i21i)=ii21=(D) i2.</cmath>
 +
 +
--Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician]

Revision as of 18:20, 20 July 2014

Problem

If $i^2=-1$, then $(i-i^{-1})^{-1}=$

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ -2i \qquad\textbf{(C)}\ 2i \qquad\textbf{(D)}\ -\frac{i}{2} \qquad\textbf{(E)}\ \frac{i}{2}$

Solution

We simplify step by step as follows: \begin{align*}(i-i^{-1})^{-1}&=\frac{1}{i-i^{-1}}\\&=\frac{1}{i-\frac{1}{i}}\\&=\frac{1}{\left(\frac{i^2-1}{i}\right)}\\&=\frac{i}{i^2-1}\\&=\boxed{\textbf{(D) }-\frac{i}{2}.}\end{align*}

--Solution by TheMaskedMagician