Difference between revisions of "2004 AMC 10B Problems/Problem 4"
(→Solution 1) |
(→Solution) |
||
Line 3: | Line 3: | ||
<math> \mathrm{(A) \ } 6 \qquad \mathrm{(B) \ } 12 \qquad \mathrm{(C) \ } 24 \qquad \mathrm{(D) \ } 144\qquad \mathrm{(E) \ } 720 </math> | <math> \mathrm{(A) \ } 6 \qquad \mathrm{(B) \ } 12 \qquad \mathrm{(C) \ } 24 \qquad \mathrm{(D) \ } 144\qquad \mathrm{(E) \ } 720 </math> | ||
− | |||
− | |||
== Solution 1 == | == Solution 1 == |
Revision as of 20:04, 22 July 2014
Contents
[hide]Problem
A standard six-sided die is rolled, and is the product of the five numbers that are visible. What is the largest number that is certain to divide ?
Solution 1
The product of all six numbers is . The products of numbers that can be visible are , , ..., . The answer to this problem is their greatest common divisor -- which is , where is the least common multiple of . Clearly and the answer is .
Solution 2
Clearly, can not have a prime factor other than , and .
We can not guarantee that the product will be divisible by , as the number can end on the bottom.
We can guarantee that the product will be divisible by (one of and will always be visible), but not by .
Finally, there are three even numbers, hence two of them are always visible and thus the product is divisible by . This is the most we can guarantee, as when the is on the bottom side, the two visible even numbers are and , and their product is not divisible by .
Hence .
See also
2004 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.