Difference between revisions of "2002 USAMO Problems/Problem 4"
Line 85: | Line 85: | ||
<center> | <center> | ||
<math> | <math> | ||
− | + | (x^2-y^2)g(x^2-y^2)=x^2g(x)-y^2g(y) | |
</math> | </math> | ||
− | < | + | </center> |
Setting <math>y=0</math> yields <math>x^2g(x^2)=x^2g(x)</math> or <math>g(x^2)=g(x)</math>. This can only be satisfied for all <math>x \in \mathbb{R}</math> if <math>g(x)</math> doesn't depend on <math>x</math>, i.e. <math>g(x)=k</math>. Back substituting, <math>f(x)=kx</math> is the only possible solution, and it can be easily confirmed that it satisfies the given condition for all real <math>k</math>. | Setting <math>y=0</math> yields <math>x^2g(x^2)=x^2g(x)</math> or <math>g(x^2)=g(x)</math>. This can only be satisfied for all <math>x \in \mathbb{R}</math> if <math>g(x)</math> doesn't depend on <math>x</math>, i.e. <math>g(x)=k</math>. Back substituting, <math>f(x)=kx</math> is the only possible solution, and it can be easily confirmed that it satisfies the given condition for all real <math>k</math>. | ||
Revision as of 00:45, 14 January 2015
Contents
[hide]Problem
Let be the set of real numbers. Determine all functions such that
for all pairs of real numbers and .
Solutions
Solution 1
We first prove that is odd.
Note that , and for nonzero , , or , which implies . Therefore is odd. Henceforth, we shall assume that all variables are non-negative.
If we let , then we obtain . Therefore the problem's condition becomes
.
But for any , we may set , to obtain
.
(It is well known that the only continuous solutions to this functional equation are of the form , but there do exist other solutions to this which are not solutions to the equation of this problem.)
We may let , to obtain .
Letting and in the original condition yields
But we know , so we have , or
.
Hence all solutions to our equation are of the form . It is easy to see that real value of will suffice.
Solution 2
As in the first solution, we obtain the result that satisfies the condition
.
We note that
.
Since , this is equal to
It follows that must be of the form .
Solution 3
Let , so that the functional equation becomes . For positive , then, , which reduces to for nonzero . For , we have . Thus, we have limited to linear functions of the form where is a constant. We can verify that if , then any value of will work: , which is always true.
Solution 4
We begin by defining , so . Rewritting the given functional equation in terms of , we find:
Setting yields or . This can only be satisfied for all if doesn't depend on , i.e. . Back substituting, is the only possible solution, and it can be easily confirmed that it satisfies the given condition for all real .
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See also
2002 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.