Difference between revisions of "2014 USAJMO Problems/Problem 2"
Line 74: | Line 74: | ||
The denominator equals <math>(1.5s)^2-(.5s-t)^2-s^2</math> where <math>.5s-t</math> can equal any value in <math>(-.5s, .5s)</math> except <math>0</math>. Therefore, the denominator can equal any value in <math>(s^2, 5s^2/4)</math>, and the ratio is any value in <math>\boxed{\left(\frac{4}{5},1\right)}.</math> | The denominator equals <math>(1.5s)^2-(.5s-t)^2-s^2</math> where <math>.5s-t</math> can equal any value in <math>(-.5s, .5s)</math> except <math>0</math>. Therefore, the denominator can equal any value in <math>(s^2, 5s^2/4)</math>, and the ratio is any value in <math>\boxed{\left(\frac{4}{5},1\right)}.</math> | ||
− | Note: It's easy to show that for any point <math>H</math> on <math>\ | + | Note: It's easy to show that for any point <math>H</math> on <math>\overline{PQ}</math> except the midpoint, Points B and C can be validly defined to make an acute, non-equilateral triangle. |
Revision as of 09:28, 10 March 2015
Problem
Let be a non-equilateral, acute triangle with , and let and denote the circumcenter and orthocenter of , respectively.
(a) Prove that line intersects both segments and .
(b) Line intersects segments and at and , respectively. Denote by and the respective areas of triangle and quadrilateral . Determine the range of possible values for .
Solution
Claim: is the reflection of over the angle bisector of (henceforth 'the' reflection)
Proof: Let be the reflection of , and let be the reflection of .
Then reflection takes to .
is equilateral, and lies on the perpendicular bisector of
It's well known that lies strictly inside (since it's acute), meaning that from which it follows that . Similarly, . Since lies on two altitudes, is the orthocenter, as desired.
So is perpendicular to the angle bisector of , which is the same line as the angle bisector of , meaning that is equilateral.
Let its side length be , and let , where because lies strictly within , as must , the reflection of . Also, it's easy to show that if in a general triangle, it's equilateral, and we is not equilateral. Hence H is not on the bisector of . Let intersect at .
Since and are 30-60-90 triangles,
Similarly,
The ratio is The denominator equals where can equal any value in except . Therefore, the denominator can equal any value in , and the ratio is any value in
Note: It's easy to show that for any point on except the midpoint, Points B and C can be validly defined to make an acute, non-equilateral triangle.