Difference between revisions of "1977 Canadian MO Problems"
Mathgeek2006 (talk | contribs) m (→Problem 7) |
|||
(2 intermediate revisions by one other user not shown) | |||
Line 41: | Line 41: | ||
the vertex <math>V</math> to this path? | the vertex <math>V</math> to this path? | ||
− | + | <asy> | |
+ | path p1=yscale(.25)*arc((0,0),1,0,180); | ||
+ | path p2=yscale(.25)*arc((0,0),1,0,-180); | ||
+ | path q1=shift(-.25,.4)*rotate(30)*xscale(.85)*p1; | ||
+ | path q2=shift(-.25,.4)*rotate(30)*xscale(.85)*p2; | ||
+ | draw(p2,black);draw(q2,black); | ||
+ | draw(p1,dashed);draw(q1,dashed); | ||
+ | draw((-1,0)--(-.5,2.4)--(1,0)); | ||
+ | MP("P",(-1,0),W);MP("V",(-.5,2.4),N); | ||
+ | draw((-.2,2.5)--(1.2,.2),arrow=ArcArrow()); | ||
+ | draw((1.2,.2)--(-.2,2.5),arrow=ArcArrow()); | ||
+ | draw((0,0)--(1,0),arrow=ArcArrow()); | ||
+ | draw((1,0)--(0,0),arrow=ArcArrow()); | ||
+ | MP("1 cm",(.5,.04),S);MP("3 cm",(.5,1.35),NE); | ||
+ | </asy> | ||
+ | |||
[[1977 Canadian MO Problems/Problem 5 | Solution]] | [[1977 Canadian MO Problems/Problem 5 | Solution]] | ||
Line 59: | Line 74: | ||
twice. Show that the number <math>f(m,n)</math> of different paths she can take to work satisfies <math>f(m,n)\le 2^{mn}</math>. | twice. Show that the number <math>f(m,n)</math> of different paths she can take to work satisfies <math>f(m,n)\le 2^{mn}</math>. | ||
− | < | + | <cmath>\underbrace{ \left. \begin{array}{|c|c|c|c|c|c|c|c|c|c|c| } |
\hline | \hline | ||
&&&&&&&&&& \\ \hline | &&&&&&&&&& \\ \hline | ||
Line 68: | Line 83: | ||
&&&&&&&&&& \\ \hline | &&&&&&&&&& \\ \hline | ||
&&&&&&&&&& \\ \hline | &&&&&&&&&& \\ \hline | ||
− | \end{ | + | \end{array} |
− | \right \}n}_m</ | + | \right\}n}_m</cmath> |
[[1977 Canadian MO Problems/Problem 7 | Solution]] | [[1977 Canadian MO Problems/Problem 7 | Solution]] |
Latest revision as of 18:23, 10 March 2015
The seven problems were all on the same day.
Contents
Problem 1
If prove that the equation has no solutions in positive integers and
Problem 2
Let be the center of a circle and be a fixed interior point of the circle different from Determine all points on the circumference of the circle such that the angle is a maximum.
Problem 3
is an integer whose representation in base is Find the smallest positive integer for which is the fourth power of an integer.
Problem 4
Let and be two polynomials with integer coefficients. Suppose that all of the coefficients of the product are even, but not all of them are divisible by 4. Show that one of and has all even coefficients and the other has at least one odd coefficient.
Problem 5
A right circular cone of base radius cm and slant height of cm is given. is a point on the circumference of the base and the shortest path from around the cone is drawn (see diagram). What is the minimum distance from the vertex to this path?
Problem 6
Let and define Show that for all values of .
Problem 7
A rectangular city is exactly blocks long and blocks wide (see diagram). A woman lives on the southwest corner of the city and works in the northeast corner. She walks to work each day but, on any given trip, she makes sure that her path does not include any intersection twice. Show that the number of different paths she can take to work satisfies .