Difference between revisions of "1998 USAMO Problems/Problem 6"
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | {{ | + | Lemma: If quadrilaterals <math>A_iA_{i+1}A_{i+2}A_{i+3}</math> and <math>A_{i+2}A_{i+3}A_{i+4}A_{i+5}</math> are tangential, and <math>A_iA_{i+3}</math> is the longest side quadrilateral <math>A_iA_{i+1}A_{i+2}A_{i+3}</math> for all <math>i</math>, then quadrilateral <math>A_{i+1}A_{i+2}A_{i+3}A_{i+4}</math> is not tangential. |
+ | Proof: | ||
+ | |||
+ | <asy> | ||
+ | import geometry; | ||
+ | size(10cm); | ||
+ | pair A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U; | ||
+ | A = (-1,0); | ||
+ | B = (1,0); | ||
+ | draw(Circle(A,1)^^Circle(B,1)); | ||
+ | C = (sqrt(2)/2-1,sqrt(2)/2); | ||
+ | D = (-sqrt(3)/2 - 1, .5); | ||
+ | E = (-sqrt(3)/2 - 1, -.5); | ||
+ | F = (-1,-1); | ||
+ | G = (1,-1); | ||
+ | H = (sqrt(3)/2 + 1, -.5); | ||
+ | I = (sqrt(3)/2 + 1, .5); | ||
+ | J = (1-sqrt(2)/2, sqrt(2)/2); | ||
+ | K = (-1-2/sqrt(3), 0); | ||
+ | L = extension(K,E,F,G); | ||
+ | M = (1+2/sqrt(3), 0); | ||
+ | N = extension(M,H,F,G); | ||
+ | O = extension(K,D,C,N); | ||
+ | P = extension(M,I,L,J); | ||
+ | Q = midpoint(F--G); | ||
+ | R = midpoint(K--O); | ||
+ | S = midpoint(P--M); | ||
+ | T = midpoint(O--C); | ||
+ | U = midpoint(J--P); | ||
+ | draw(O--K--L--N--M--P--L^^K--M^^O--N); | ||
+ | label("$A_i$", O, NW); | ||
+ | label("$A_{i+1}$", K, W); | ||
+ | label("$A_{i+2}$", L, SW); | ||
+ | label("$A_{i+3}$", N, SE); | ||
+ | label("$A_{i+4}$", M, dir(0)); | ||
+ | label("$A_{i+5}$", P, NE); | ||
+ | label("$j$", R, W); | ||
+ | label("$u$", E, SW); | ||
+ | label("$y$", Q, S); | ||
+ | label("$n$", H, SE); | ||
+ | label("$h$", S, NE); | ||
+ | label("$j + y - u$", T, NE); | ||
+ | label("$h + y - n$", U, SW); | ||
+ | </asy> | ||
+ | |||
+ | If quadrilaterals <math>A_iA_{i+1}A_{i+2}A_{i+3}</math> and <math>A_{i+2}A_{i+3}A_{i+4}A_{i+5}</math> are tangential, then <math>A_iA_{i+3}</math> must have side length of <math>j+y-u</math>, and <math>A_{i+2}A_{i+5}</math> must have side length of <math>h + y - n</math> (One can see this from what is known as walk-around). Suppose quadrilateral <math>A_{i+1}A_{i+2}A_{i+3}A_{i+4}</math> is tangential. Then, again, we see that <math>A_{i+1}A_{i+4}</math> must have side length <math>u + n - y</math>. We assumed by lemma that <math>A_iA_{i+3} > A_{i}A_{i+1}</math> for all <math>i</math>, so we have <math>A_iA_{i+3} > j</math>, <math>A_{i+1}A_{i+4} > y</math>, and <math>A_{i+2}A_{i+5} > h</math>. If we add up the side lengths <math>A_iA_{i+3} + A_{i+1}A_{i+4} + A_{i+2}A_{i+5}</math>, we get: | ||
+ | <cmath>A_iA_{i+3} + A_{i+1}A_{i+4} + A_{i+2}A_{i+5} = j + y - u + h + y - n + u + n - y</cmath> | ||
+ | <cmath>A_iA_{i+3} + A_{i+1}A_{i+4} + A_{i+2}A_{i+5} = j + h + y</cmath> | ||
+ | |||
+ | However, by the lemma, we assumed that <math>A_iA_{i+3} > j</math>, <math>A_{i+1}A_{i+4} > y</math>, and <math>A_{i+2}A_{i+5} > h</math>. Adding these up, we get: | ||
+ | <cmath>A_iA_{i+3} + A_{i+1}A_{i+4} + A_{i+2}A_{i+5} > j + h + y,</cmath> | ||
+ | |||
+ | which is a contradiction. Thus, quadrilateral <math>A_{i+1}A_{i+2}A_{i+3}A_{i+4}</math> is not tangential, proving the lemma. | ||
+ | |||
+ | By lemma, the maximum number of quadrilaterals in a <math>n</math>-gon occurs when the tangential quadrilaterals alternate, giving us <math>k = \lfloor \frac{n}{2} \rfloor</math>. | ||
==See Also== | ==See Also== | ||
{{USAMO newbox|year=1998|num-b=5|after=Last Question}} | {{USAMO newbox|year=1998|num-b=5|after=Last Question}} | ||
[[Category:Olympiad Geometry Problems]] | [[Category:Olympiad Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:13, 23 March 2015
Problem
Let be an integer. Find the largest integer (as a function of ) such that there exists a convex -gon for which exactly of the quadrilaterals have an inscribed circle. (Here .)
Solution
Lemma: If quadrilaterals and are tangential, and is the longest side quadrilateral for all , then quadrilateral is not tangential.
Proof:
If quadrilaterals and are tangential, then must have side length of , and must have side length of (One can see this from what is known as walk-around). Suppose quadrilateral is tangential. Then, again, we see that must have side length . We assumed by lemma that for all , so we have , , and . If we add up the side lengths , we get:
However, by the lemma, we assumed that , , and . Adding these up, we get:
which is a contradiction. Thus, quadrilateral is not tangential, proving the lemma.
By lemma, the maximum number of quadrilaterals in a -gon occurs when the tangential quadrilaterals alternate, giving us .
See Also
1998 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.