Difference between revisions of "2006 IMO Problems/Problem 1"

(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
.
+
We have angle(IBP)= angle(IBC) - angle(PBC)=1/2 angle(ABC) - angle(PBC)=1/2 [ angle(PBA) - angle(PBC)]  (1)
 +
and similarly angle(ICP)=angle(PCB) - angle(ICB) = angle(PCB) - 1/2 angle(ACB)= 1/2[ angle(PCB) - angle(PCA)] (2) 
 +
since angle(PBA)+angle(PCA)=angle(PBC)+angle(PCB)  , then  angle(PBA) - angle(PBC) =  angle(PCB) - angle(PCA)  (3)
 +
(1) , (2) and (3) therefore : angle(IBP)=angle(ICP)  i.e  BIPC is con cyclic .
 +
Let J be a point of intersection between (AI) and the circumcise of triangle ABC , then IJB is isosceles traingle because of angle(BIJ)=angle(IBJ)
 +
so JB=JC=JI , then JI=JP  (because BIPC con cyclic) .
 +
 
 +
In triangle APJ  :  AP+JP >=  AJ=AI+IJ  but JI=JP  so  AP >= AI  .

Revision as of 22:54, 13 May 2015

Problem

Let $ABC$ be triangle with incenter $I$. A point $P$ in the interior of the triangle satisfies $\angle PBA+\angle PCA = \angle PBC+\angle PCB$. Show that $AP \geq AI$, and that equality holds if and only if $P=I$

Solution

We have angle(IBP)= angle(IBC) - angle(PBC)=1/2 angle(ABC) - angle(PBC)=1/2 [ angle(PBA) - angle(PBC)] (1) and similarly angle(ICP)=angle(PCB) - angle(ICB) = angle(PCB) - 1/2 angle(ACB)= 1/2[ angle(PCB) - angle(PCA)] (2) since angle(PBA)+angle(PCA)=angle(PBC)+angle(PCB) , then angle(PBA) - angle(PBC) = angle(PCB) - angle(PCA) (3) (1) , (2) and (3) therefore : angle(IBP)=angle(ICP) i.e BIPC is con cyclic . Let J be a point of intersection between (AI) and the circumcise of triangle ABC , then IJB is isosceles traingle because of angle(BIJ)=angle(IBJ) so JB=JC=JI , then JI=JP (because BIPC con cyclic) .

In triangle APJ  : AP+JP >= AJ=AI+IJ but JI=JP so AP >= AI .