Difference between revisions of "2006 IMO Problems/Problem 1"
Mengsay loem (talk | contribs) (→Solution) |
|||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | . | + | We have angle(IBP)= angle(IBC) - angle(PBC)=1/2 angle(ABC) - angle(PBC)=1/2 [ angle(PBA) - angle(PBC)] (1) |
+ | and similarly angle(ICP)=angle(PCB) - angle(ICB) = angle(PCB) - 1/2 angle(ACB)= 1/2[ angle(PCB) - angle(PCA)] (2) | ||
+ | since angle(PBA)+angle(PCA)=angle(PBC)+angle(PCB) , then angle(PBA) - angle(PBC) = angle(PCB) - angle(PCA) (3) | ||
+ | (1) , (2) and (3) therefore : angle(IBP)=angle(ICP) i.e BIPC is con cyclic . | ||
+ | Let J be a point of intersection between (AI) and the circumcise of triangle ABC , then IJB is isosceles traingle because of angle(BIJ)=angle(IBJ) | ||
+ | so JB=JC=JI , then JI=JP (because BIPC con cyclic) . | ||
+ | |||
+ | In triangle APJ : AP+JP >= AJ=AI+IJ but JI=JP so AP >= AI . |
Revision as of 22:54, 13 May 2015
Problem
Let be triangle with incenter . A point in the interior of the triangle satisfies . Show that , and that equality holds if and only if
Solution
We have angle(IBP)= angle(IBC) - angle(PBC)=1/2 angle(ABC) - angle(PBC)=1/2 [ angle(PBA) - angle(PBC)] (1) and similarly angle(ICP)=angle(PCB) - angle(ICB) = angle(PCB) - 1/2 angle(ACB)= 1/2[ angle(PCB) - angle(PCA)] (2) since angle(PBA)+angle(PCA)=angle(PBC)+angle(PCB) , then angle(PBA) - angle(PBC) = angle(PCB) - angle(PCA) (3) (1) , (2) and (3) therefore : angle(IBP)=angle(ICP) i.e BIPC is con cyclic . Let J be a point of intersection between (AI) and the circumcise of triangle ABC , then IJB is isosceles traingle because of angle(BIJ)=angle(IBJ) so JB=JC=JI , then JI=JP (because BIPC con cyclic) .
In triangle APJ : AP+JP >= AJ=AI+IJ but JI=JP so AP >= AI .