Difference between revisions of "1960 IMO Problems/Problem 3"

(Solution 2)
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In a given right triangle <math>ABC</math>, the hypotenuse <math>BC</math>, of length <math>a</math>, is divided into <math>n</math> equal parts (<math>n</math> and odd integer). Let <math>\alpha</math> be the acute angle subtending, from <math>A</math>, that segment which contains the midpoint of the hypotenuse. Let <math>h</math> be the length of the altitude to the hypotenuse of the triangle. Prove that:
+
In a given right triangle <math>ABC</math>, the hypotenuse <math>BC</math>, of length <math>a</math>, is divided into <math>n</math> equal parts (<math>n</math> an odd integer). Let <math>\alpha</math> be the acute angle subtending, from <math>A</math>, that segment which contains the midpoint of the hypotenuse. Let <math>h</math> be the length of the altitude to the hypotenuse of the triangle. Prove that:
 
<center><math>
 
<center><math>
 
\tan{\alpha}=\frac{4nh}{(n^2-1)a}.
 
\tan{\alpha}=\frac{4nh}{(n^2-1)a}.
Line 7: Line 7:
  
 
== Solution ==
 
== Solution ==
{{solution}}
+
Using coordinates, let <math>A=(0,0)</math>, <math>B=(b,0)</math>, and <math>C=(0,c)</math>. Also, let <math>PQ</math> be the segment that contains the midpoint of the hypotenuse with <math>P</math> closer to <math>B</math>.
 +
 
 +
<asy>
 +
size(8cm);
 +
pair A,B,C,P,Q;
 +
A=(0,0);
 +
B=(4,0);
 +
C=(0,3);
 +
P=(2.08,1.44);
 +
Q=(1.92,1.56);
 +
dot(A);
 +
dot(B);
 +
dot(C);
 +
dot(P);
 +
dot(Q);
 +
label("A",A,SW);
 +
label("B",B,SE);
 +
label("C",C,NW);
 +
label("P",P,ENE);
 +
label("Q",Q,NNE);
 +
draw(A--B--C--cycle);
 +
draw(A--P);
 +
draw(A--Q);
 +
</asy>
 +
 
 +
Then, <math>P = \frac{n+1}{2}B+\frac{n-1}{2}C = \left(\frac{n+1}{2}b,\frac{n-1}{2}c\right)</math>, and <math>Q = \frac{n-1}{2}B+\frac{n+1}{2}C = \left(\frac{n-1}{2}b,\frac{n+1}{2}c\right)</math>.
 +
 
 +
So, <math>\text{slope}</math><math>(PA)=\tan{\angle PAB}=\frac{c}{b}\cdot\frac{n-1}{n+1}</math>, and <math>\text{slope}</math><math>(QA)=\tan{\angle QAB}=\frac{c}{b}\cdot\frac{n+1}{n-1}</math>.
 +
 
 +
Thus, <math>\tan{\alpha} = \tan{(\angle QAB - \angle PAB)} = \frac{(\frac{c}{b}\cdot\frac{n+1}{n-1})-(\frac{c}{b}\cdot\frac{n-1}{n+1})}{1+(\frac{c}{b}\cdot\frac{n+1}{n-1})\cdot(\frac{c}{b}\cdot\frac{n-1}{n+1})}</math>
 +
<math>= \frac{\frac{c}{b}\cdot\frac{4n}{n^2-1}}{1+\frac{c^2}{b^2}} = \frac{4nbc}{(n^2-1)(b^2+c^2)}=\frac{4nbc}{(n^2-1)a^2}</math>.
 +
 
 +
Since <math>[ABC]=\frac{1}{2}bc=\frac{1}{2}ah</math>, <math>bc=ah</math> and <math>\tan{\alpha}=\frac{4nh}{(n^2-1)a}</math> as desired.
 +
 
 +
==Solution 2==
 +
Let <math>P, Q, R</math> be points on side <math>BC</math> such that segment <math>PR</math> contains midpoint <math>Q</math>, with <math>P</math> closer to <math>C</math> and (without loss of generality) <math>AC \le AB</math>. Then if <math>AD</math> is an altitude, then <math>D</math> is between <math>P</math> and <math>C</math>. Combined with the obvious fact that <math>Q</math> is the midpoint of <math>PR</math> (for <math>n</math> is odd), we have
 +
<cmath>\tan {\angle PAR} = \tan (\angle RAD - \angle PAD) = \frac{\frac{PR}{h}}{1 + \frac{DP \cdot DR}{h^2}} = \frac{PR \cdot h}{h^2 + DP \cdot DR} = \frac{PR \cdot h}{AQ^2 - DQ^2 + DP \cdot DR} = \frac{PR \cdot h}{\frac{a^2}{4} - PQ^2} = \frac{\frac{a}{n} \cdot h}{\frac{a^2}{4} - \frac{a^2}{4n^2}} = \frac{4nh}{(n^2-1)a}.</cmath>
  
 
==See Also==
 
==See Also==
{{IMO box|year=1960|num-b=2|num-a=4}}
+
{{IMO7 box|year=1960|num-b=2|num-a=4}}
  
 
[[Category:Olympiad Geometry Problems]]
 
[[Category:Olympiad Geometry Problems]]

Latest revision as of 23:14, 16 May 2015

Problem

In a given right triangle $ABC$, the hypotenuse $BC$, of length $a$, is divided into $n$ equal parts ($n$ an odd integer). Let $\alpha$ be the acute angle subtending, from $A$, that segment which contains the midpoint of the hypotenuse. Let $h$ be the length of the altitude to the hypotenuse of the triangle. Prove that:

$\tan{\alpha}=\frac{4nh}{(n^2-1)a}.$

Solution

Using coordinates, let $A=(0,0)$, $B=(b,0)$, and $C=(0,c)$. Also, let $PQ$ be the segment that contains the midpoint of the hypotenuse with $P$ closer to $B$.

[asy] size(8cm); pair A,B,C,P,Q; A=(0,0); B=(4,0); C=(0,3); P=(2.08,1.44); Q=(1.92,1.56); dot(A); dot(B); dot(C); dot(P); dot(Q); label("A",A,SW); label("B",B,SE); label("C",C,NW); label("P",P,ENE); label("Q",Q,NNE); draw(A--B--C--cycle);  draw(A--P);  draw(A--Q);  [/asy]

Then, $P = \frac{n+1}{2}B+\frac{n-1}{2}C = \left(\frac{n+1}{2}b,\frac{n-1}{2}c\right)$, and $Q = \frac{n-1}{2}B+\frac{n+1}{2}C = \left(\frac{n-1}{2}b,\frac{n+1}{2}c\right)$.

So, $\text{slope}$$(PA)=\tan{\angle PAB}=\frac{c}{b}\cdot\frac{n-1}{n+1}$, and $\text{slope}$$(QA)=\tan{\angle QAB}=\frac{c}{b}\cdot\frac{n+1}{n-1}$.

Thus, $\tan{\alpha} = \tan{(\angle QAB - \angle PAB)} = \frac{(\frac{c}{b}\cdot\frac{n+1}{n-1})-(\frac{c}{b}\cdot\frac{n-1}{n+1})}{1+(\frac{c}{b}\cdot\frac{n+1}{n-1})\cdot(\frac{c}{b}\cdot\frac{n-1}{n+1})}$ $= \frac{\frac{c}{b}\cdot\frac{4n}{n^2-1}}{1+\frac{c^2}{b^2}} = \frac{4nbc}{(n^2-1)(b^2+c^2)}=\frac{4nbc}{(n^2-1)a^2}$.

Since $[ABC]=\frac{1}{2}bc=\frac{1}{2}ah$, $bc=ah$ and $\tan{\alpha}=\frac{4nh}{(n^2-1)a}$ as desired.

Solution 2

Let $P, Q, R$ be points on side $BC$ such that segment $PR$ contains midpoint $Q$, with $P$ closer to $C$ and (without loss of generality) $AC \le AB$. Then if $AD$ is an altitude, then $D$ is between $P$ and $C$. Combined with the obvious fact that $Q$ is the midpoint of $PR$ (for $n$ is odd), we have \[\tan {\angle PAR} = \tan (\angle RAD - \angle PAD) = \frac{\frac{PR}{h}}{1 + \frac{DP \cdot DR}{h^2}} = \frac{PR \cdot h}{h^2 + DP \cdot DR} = \frac{PR \cdot h}{AQ^2 - DQ^2 + DP \cdot DR} = \frac{PR \cdot h}{\frac{a^2}{4} - PQ^2} = \frac{\frac{a}{n} \cdot h}{\frac{a^2}{4} - \frac{a^2}{4n^2}} = \frac{4nh}{(n^2-1)a}.\]

See Also

1960 IMO (Problems)
Preceded by
Problem 2
1 2 3 4 5 6 7 Followed by
Problem 4