Difference between revisions of "2006 USAMO Problems/Problem 6"
5849206328x (talk | contribs) (→Solutions: other official solution) |
(→Solution 2) |
||
Line 38: | Line 38: | ||
<cmath>x + \frac{syz}{y - z} = \frac{AE(r_1 - r_2)}{(1 - r_1)E - (1 - r_2)A} = \frac{AF - BE}{A + F - B - E}.</cmath> | <cmath>x + \frac{syz}{y - z} = \frac{AE(r_1 - r_2)}{(1 - r_1)E - (1 - r_2)A} = \frac{AF - BE}{A + F - B - E}.</cmath> | ||
This last expression is invariant under simultaneously interchanging <math>A</math> and <math>B</math> and interchanging <math>E</math> and <math>F</math>. Therefore it is also the intersection of the circumcircles of <math>SBF</math> and <math>TCF</math>. | This last expression is invariant under simultaneously interchanging <math>A</math> and <math>B</math> and interchanging <math>E</math> and <math>F</math>. Therefore it is also the intersection of the circumcircles of <math>SBF</math> and <math>TCF</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | Let <math>M</math> be the Miquel point of <math>ABCD</math>; then <math>M</math> is the center of the spiral similarity that takes <math>AD</math> to <math>BC</math>. Because <math>\frac{AE}{ED} = \frac{BF}{FC}</math>, the same spiral similarity also takes <math>E</math> to <math>F</math>, so <math>M</math> is the center of the spiral similarity that maps <math>AE</math> to <math>BF</math> and <math>ED</math> to <math>FC</math>. Then it is obvious that the circumcircles of <math>SAE</math>, <math>SBF</math>, <math>TCF</math>, and <math>TDE</math> pass through <math>M</math>. | ||
{{alternate solutions}} | {{alternate solutions}} |
Latest revision as of 21:46, 18 May 2015
Problem
(Zuming Feng, Zhonghao Ye) Let be a quadrilateral, and let and be points on sides and , respectively, such that . Ray meets rays and at and respectively. Prove that the circumcircles of triangles , , , and pass through a common point.
Solutions
Solution 1
Let the intersection of the circumcircles of and be , and let the intersection of the circumcircles of and be .
because tends both arcs and . because tends both arcs and . Thus, by AA similarity, and is the center of spiral similarity for and . because tends both arcs and . because tends both arcs and . Thus, by AA similarity, and is the center of spiral similarity for and .
From the similarity, we have that . But we are given , so multiplying the 2 equations together gets us . are the supplements of , which are congruent, so , and so by SAS similarity, and so is also the center of spiral similarity for and . Thus, and are the same point, which all the circumcircles pass through, and so the statement is true.
Solution 2
We will give a solution using complex coordinates. The first step is the following lemma.
Lemma. Suppose and are real numbers and , and are complex. The circle in the complex plane passing through , and also passes through the point , independent of .
Proof. Four points , , and in the complex plane lie on a circle if and only if the cross-ratio is real. Since we compute the given points are on a circle.
Lay down complex coordinates with and and on the positive real axis. Then there are real , and with , and and hence gives The line consists of all points of the form for real . Since lies on this line and has zero imaginary part, we see from that it corresponds to . Thus Apply the lemma with , , , and . Setting gives and setting gives Therefore the circumcircles to and meet at This last expression is invariant under simultaneously interchanging and and interchanging and . Therefore it is also the intersection of the circumcircles of and .
Solution 3
Let be the Miquel point of ; then is the center of the spiral similarity that takes to . Because , the same spiral similarity also takes to , so is the center of the spiral similarity that maps to and to . Then it is obvious that the circumcircles of , , , and pass through .
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See also
- <url>viewtopic.php?t=84559 Discussion on AoPS/MathLinks</url>
2006 USAMO (Problems • Resources) | ||
Preceded by Problem 5 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.