During AMC testing, the AoPS Wiki is in read-only mode. Your account is not considered logged in on wiki pages and no edits can be made.

Difference between revisions of "Fermat numbers"

 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
Any number in the form <math>2^{2^n}+1</math> where <math>n</math> is any natural number is known as a '''Fermat number'''. It was hypothesized by Fermat that every number in this form was prime, but Euler found that the fifth Fermat number can be factored as <math>2^{2^5}+1=641 \cdot 6,700,417</math>.
+
Any number in the form <math>2^{2^n}+1</math> where <math>n</math> is any natural number is known as a '''Fermat number'''. It was hypothesized by Fermat that every number in this form was prime, but Euler found that the fifth Fermat number can be factored as <math>2^{2^5}+1=641 \cdot 6,700,417</math>. There are only five known [[Fermat Primes]], and it is believed that there are only five, but we are still lacking a complete proof.
  
[[Category:stubs]]
+
{{stub}}

Latest revision as of 21:40, 28 August 2015

Any number in the form $2^{2^n}+1$ where $n$ is any natural number is known as a Fermat number. It was hypothesized by Fermat that every number in this form was prime, but Euler found that the fifth Fermat number can be factored as $2^{2^5}+1=641 \cdot 6,700,417$. There are only five known Fermat Primes, and it is believed that there are only five, but we are still lacking a complete proof.

This article is a stub. Help us out by expanding it.