Difference between revisions of "2008 AMC 10A Problems/Problem 17"

(Problem)
Line 2: Line 2:
 
An [[equilateral triangle]] has side length <math>6</math>. What is the [[area]] of the region containing all points that are outside the triangle but not more than <math>3</math> units from a point of the triangle?
 
An [[equilateral triangle]] has side length <math>6</math>. What is the [[area]] of the region containing all points that are outside the triangle but not more than <math>3</math> units from a point of the triangle?
  
<math>\mathrm{(A)}\ 36+24\sqrt{3}\qquad\mathrm{(B)}\ 54+9\pi\qquad\mathrm{(C)}\ 54+18\sqrt{3}+6\pi\qquad\mathrm{(D)}\ \left(2\sqrt{3}+3\right)^2\pi\\\mathrm{(E)}\ 9\left(\sqrt{3}{+1\right)^2\pi</math>
+
<math>\mathrm{(A)}\ 36+24\sqrt{3}\qquad\mathrm{(B)}\ 54+9\pi\qquad\mathrm{(C)}\ 54+18\sqrt{3}+6\pi\qquad\mathrm{(D)}\ \left(2\sqrt{3}+3\right)^2\pi\\\mathrm{(E)}\ 9\left(\sqrt{3}{+1\right})^2\pi</math>
  
 
==Solution==
 
==Solution==

Revision as of 11:03, 21 January 2016

Problem

An equilateral triangle has side length $6$. What is the area of the region containing all points that are outside the triangle but not more than $3$ units from a point of the triangle?

$\mathrm{(A)}\ 36+24\sqrt{3}\qquad\mathrm{(B)}\ 54+9\pi\qquad\mathrm{(C)}\ 54+18\sqrt{3}+6\pi\qquad\mathrm{(D)}\ \left(2\sqrt{3}+3\right)^2\pi\\\mathrm{(E)}\ 9\left(\sqrt{3}{+1\right})^2\pi$ (Error compiling LaTeX. Unknown error_msg)

Solution

[asy] pointpen = black; pathpen = black+linewidth(0.7); pen d = linetype("6 6")+linewidth(0.7); pair A=(0,0),B=(6,0),C=6*expi(-pi/3); D(arc(A,3,90,210)); D(arc(B,3,-30,90)); D(arc(C,3,210,330)); D(arc(A,-3,90,210),d); D(arc(B,-3,-30,90),d); D(arc(C,-3,210,330),d); D(D(A)--D(B)--D(C)--cycle,linewidth(1)); D(A--(0,3)--(6,3)--B); D(A--3*expi(7/6*pi)--C+3*expi(7/6*pi)--C); D(B--B+3*expi(11/6*pi)--C+3*expi(11/6*pi)--C); MP("3",(0,1.5),W); MP("6",(3,0),NW); [/asy]

The region described contains three rectangles of dimensions $3 \times 6$, and three $120^{\circ}$ degree arcs of circles of radius $3$. Thus the answer is \[3(3 \times 6) + 3 \left( \frac{120^{\circ}}{360^{\circ}} \times 3^2 \pi\right) = 54 + 9\pi \Longrightarrow \mathrm{(B)}.\]

See also

2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png