Difference between revisions of "2016 AMC 12A Problems/Problem 3"
(→Solution) |
(→Solution) |
||
Line 1: | Line 1: | ||
+ | |||
+ | ==Problem== | ||
+ | The remainder function can be defined for all real numbers <math>x</math> and <math>y</math> with <math>y\ne 0</math> by | ||
+ | <math>\text{rem}(x,y)=x-y\Big\lfloor\frac{x}{y}\Big\rfloor}</math>, | ||
+ | where <math>\Big\lfloor\frac{x}{y}\Big\rfloor</math> denotes the greatest integer less than or equal to <math>\frac{x}{y}</math>. What is the value of <math>\text{rem}\left(\frac{3}{8},-\frac{2}{5}\right)</math>? | ||
+ | |||
+ | <math>\textbf{(A)}\ -\frac{3}{8}\qquad\textbf{(B)}\ -\frac{1}{40}\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ \frac{3}{8}\qquad\textbf{(E)}\ \frac{31}{40}</math> | ||
==Solution== | ==Solution== |
Revision as of 22:43, 3 February 2016
Problem
The remainder function can be defined for all real numbers and with by $\text{rem}(x,y)=x-y\Big\lfloor\frac{x}{y}\Big\rfloor}$ (Error compiling LaTeX. Unknown error_msg), where denotes the greatest integer less than or equal to . What is the value of ?
Solution