Difference between revisions of "1990 AHSME Problems/Problem 1"
(Created page with '== Problem== If <math>\dfrac{x/4}{2}=\dfrac{4}{x/2}</math>, then <math>x=</math> <math>\text{(A)}\ \pm\frac{1}{2}\qquad\text{(B)}\ \pm 1\qquad\text{(C)}\ \pm 2\qquad\text{(D)}\ …') |
m |
||
(4 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
== Problem== | == Problem== | ||
− | If <math>\dfrac{x | + | If <math>\dfrac{\frac{x}{4}}{2}=\dfrac{4}{\frac{x}{2}}</math>, then <math>x=</math> |
<math>\text{(A)}\ \pm\frac{1}{2}\qquad\text{(B)}\ \pm 1\qquad\text{(C)}\ \pm 2\qquad\text{(D)}\ \pm 4\qquad\text{(E)}\ \pm 8</math> | <math>\text{(A)}\ \pm\frac{1}{2}\qquad\text{(B)}\ \pm 1\qquad\text{(C)}\ \pm 2\qquad\text{(D)}\ \pm 4\qquad\text{(E)}\ \pm 8</math> | ||
Line 8: | Line 8: | ||
Cross-multiplying leaves | Cross-multiplying leaves | ||
− | + | <cmath> \begin{align*}\dfrac{x^2}{8} &= 8\ x^2 &= 64\ \sqrt{x^2} &= \sqrt{64}\ x &= \pm 8\end{align*} </cmath> | |
So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>. | So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>. | ||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1990|num-b=1|num-a=2}} | ||
+ | |||
+ | [[Category: Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 02:35, 4 February 2016
Problem
If , then
Solution
Cross-multiplying leaves
So the answer is .
See also
1990 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.