Difference between revisions of "1990 AHSME Problems/Problem 1"

(Solution)
m
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== Problem==
 
== Problem==
If <math>\dfrac{x/4}{2}=\dfrac{4}{x/2}</math>, then <math>x=</math>
+
If <math>\dfrac{\frac{x}{4}}{2}=\dfrac{4}{\frac{x}{2}}</math>, then <math>x=</math>
  
 
<math>\text{(A)}\ \pm\frac{1}{2}\qquad\text{(B)}\ \pm 1\qquad\text{(C)}\ \pm 2\qquad\text{(D)}\ \pm 4\qquad\text{(E)}\ \pm 8</math>
 
<math>\text{(A)}\ \pm\frac{1}{2}\qquad\text{(B)}\ \pm 1\qquad\text{(C)}\ \pm 2\qquad\text{(D)}\ \pm 4\qquad\text{(E)}\ \pm 8</math>
Line 8: Line 8:
 
Cross-multiplying leaves  
 
Cross-multiplying leaves  
  
<math><cmath> x28=8x2=64x=64x=±8 </cmath></math>
+
<cmath> \begin{align*}\dfrac{x^2}{8} &= 8\ x^2 &= 64\ \sqrt{x^2} &= \sqrt{64}\ x &= \pm 8\end{align*} </cmath>
  
 
So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>.
 
So the answer is <math>\boxed{\text{(E)} \, \pm 8}</math>.
 +
 +
== See also ==
 +
{{AHSME box|year=1990|num-b=1|num-a=2}} 
 +
 +
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 02:35, 4 February 2016

Problem

If $\dfrac{\frac{x}{4}}{2}=\dfrac{4}{\frac{x}{2}}$, then $x=$

$\text{(A)}\ \pm\frac{1}{2}\qquad\text{(B)}\ \pm 1\qquad\text{(C)}\ \pm 2\qquad\text{(D)}\ \pm 4\qquad\text{(E)}\ \pm 8$

Solution

Cross-multiplying leaves

\begin{align*}\dfrac{x^2}{8} &= 8\\ x^2 &= 64\\ \sqrt{x^2} &= \sqrt{64}\\ x &= \pm 8\end{align*}

So the answer is $\boxed{\text{(E)} \, \pm 8}$.

See also

1990 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png