Difference between revisions of "1977 USAMO Problems/Problem 3"
Mathgeek2006 (talk | contribs) m |
(→Solution) |
||
Line 2: | Line 2: | ||
If <math> a</math> and <math> b</math> are two of the roots of <math> x^4+x^3-1=0</math>, prove that <math> ab</math> is a root of <math> x^6+x^4+x^3-x^2-1=0</math>. | If <math> a</math> and <math> b</math> are two of the roots of <math> x^4+x^3-1=0</math>, prove that <math> ab</math> is a root of <math> x^6+x^4+x^3-x^2-1=0</math>. | ||
− | == Solution == | + | ==Solution== |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
Given the roots <math>a,b,c,d</math> of the equation <math>x^{4}+x^{3}-1=0</math>. | Given the roots <math>a,b,c,d</math> of the equation <math>x^{4}+x^{3}-1=0</math>. | ||
− | First, <math>a+b+c+d = -1 , ab+ac+ad+bc+bd+cd=0, abcd = -1</math>. | + | First, Vieta's relations give <math>a+b+c+d = -1 , ab+ac+ad+bc+bd+cd=0, abcd = -1</math>. |
Then <math>cd=-\frac{1}{ab}</math> and <math>c+d=-1-(a+b)</math>. | Then <math>cd=-\frac{1}{ab}</math> and <math>c+d=-1-(a+b)</math>. | ||
− | + | The other coefficients give <math>ab+(a+b)(c+d)+cd = 0</math> or <math>ab+(a+b)[-1-(a+b)]-\frac{1}{ab}=0</math>. | |
Let <math>a+b=s</math> and <math>ab=p</math>, so <math>p+s(-1-s)-\frac{1}{p}=0</math>(1). | Let <math>a+b=s</math> and <math>ab=p</math>, so <math>p+s(-1-s)-\frac{1}{p}=0</math>(1). |
Revision as of 08:52, 28 February 2016
Problem
If and are two of the roots of , prove that is a root of .
Solution
Given the roots of the equation .
First, Vieta's relations give .
Then and .
The other coefficients give or .
Let and , so (1).
Second, is a root, and is a root, .
Multiplying: or .
Solving .
In (1): .
or .
Conclusion: is a root of .
See Also
1977 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.