Difference between revisions of "2016 AIME II Problems/Problem 3"

m (Problem 3)
(Problem 3)
Line 1: Line 1:
==Problem 3==
 
 
Let <math>x,y,</math> and <math>z</math> be real numbers satisfying the system
 
Let <math>x,y,</math> and <math>z</math> be real numbers satisfying the system
 
<math>\log_2(xyz-3+\log_5 x)=5</math>
 
<math>\log_2(xyz-3+\log_5 x)=5</math>

Revision as of 18:09, 17 March 2016

Let $x,y,$ and $z$ be real numbers satisfying the system $\log_2(xyz-3+\log_5 x)=5$ $\log_3(xyz-3+\log_5 y)=4$ $\log_4(xyz-3+\log_5 z)=4$ Find the value of $|\log_5 x|+|\log_5 y|+|\log_5 z|$.

Solution

First, we get rid of logs by taking powers: $xyz-3+\log_5 x=2^{5}=32$, $xyz-3+\log_5 y=3^{4}=81$, and $(xyz-3+\log_5 z)=4^{4}=256$. Adding all the equations up and using the $\log {xy}=\log {x}+\log{y}$ property, we have $3xyz+\log_5{xyz} = 378$, so we have $xyz=125$. Solving for $x,y,z$ by substituting $125$ for $xyz$ in each equation, we get $\log_5 x=-90, \log_5 y=-41, \log_5 z=134$, so adding all the absolute values we have $90+41+134=\boxed{265}$.

Solution by Shaddoll