Difference between revisions of "2016 AIME II Problems/Problem 1"
(Created page with "Initially Alex, Betty, and Charlie had a total of <math>444</math> peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person...") |
|||
Line 1: | Line 1: | ||
Initially Alex, Betty, and Charlie had a total of <math>444</math> peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had formed a geometric progression. Alex eats <math>5</math> of his peanuts, Betty eats <math>9</math> of her peanuts, and Charlie eats <math>25</math> of his peanuts. Now the three numbers of peanuts each person has forms an arithmetic progression. Find the number of peanuts Alex had initially. | Initially Alex, Betty, and Charlie had a total of <math>444</math> peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had formed a geometric progression. Alex eats <math>5</math> of his peanuts, Betty eats <math>9</math> of her peanuts, and Charlie eats <math>25</math> of his peanuts. Now the three numbers of peanuts each person has forms an arithmetic progression. Find the number of peanuts Alex had initially. | ||
+ | |||
+ | ==Solution== | ||
+ | Let <math>r</math> be the common ratio, where <math>r>1</math>. We than have <math>ar-9-(a-5)=a(r-1)-4=ar^{2}-25-(ar-9)=ar(r-1)-16</math>. We now have, letting, subtracting the 2 equations, <math>ar^{2}+-2ar+a=12</math>, so we have <math>3ar=432, or ar=144</math>, which is how much Betty had. Now we have <math>144+\dfrac{144}{r}+144r=444</math>, or <math>144(r+\dfrac{1}{r})=300</math>, or <math>r+\dfrac{1}{r}=\dfrac{25}{16}</math>, which solving for <math>r</math> gives <math>r=\dfrac{4}{3}</math>, since <math>r>1</math>, so Alex had <math>\dfrac{3}{4} \cdot 144=\boxed{108}</math> peanuts. | ||
+ | |||
+ | Solution by Shaddoll |
Revision as of 18:23, 17 March 2016
Initially Alex, Betty, and Charlie had a total of peanuts. Charlie had the most peanuts, and Alex had the least. The three numbers of peanuts that each person had formed a geometric progression. Alex eats of his peanuts, Betty eats of her peanuts, and Charlie eats of his peanuts. Now the three numbers of peanuts each person has forms an arithmetic progression. Find the number of peanuts Alex had initially.
Solution
Let be the common ratio, where . We than have . We now have, letting, subtracting the 2 equations, , so we have , which is how much Betty had. Now we have , or , or , which solving for gives , since , so Alex had peanuts.
Solution by Shaddoll