Difference between revisions of "1954 AHSME Problems/Problem 37"
Katzrockso (talk | contribs) (Created page with "== Problem 37== Given <math>\triangle PQR</math> with <math>\overline{RS}</math> bisecting <math>\angle R</math>, <math>PQ</math> extended to <math>D</math> and <math>\angle ...") |
Katzrockso (talk | contribs) (→Partial Solution) |
||
Line 51: | Line 51: | ||
== Partial Solution == | == Partial Solution == | ||
<asy> | <asy> | ||
+ | import math; | ||
path anglemark2(pair A, pair B, pair C, real t=8, bool flip=false) | path anglemark2(pair A, pair B, pair C, real t=8, bool flip=false) | ||
{ | { | ||
Line 73: | Line 74: | ||
draw(R--Sp); | draw(R--Sp); | ||
draw(P--D--M); | draw(P--D--M); | ||
+ | pen f=fontsize(10pt); | ||
pair pI=extension(D,M,R,Q); | pair pI=extension(D,M,R,Q); | ||
− | + | label("$O$",pI+(-0.2,0.166),f); | |
draw(anglemark2(Sp,P,R,17)); | draw(anglemark2(Sp,P,R,17)); | ||
label("$p$",P+(0.35,0.1)); | label("$p$",P+(0.35,0.1)); | ||
Line 85: | Line 87: | ||
draw(anglemark2(M,D,P,29)); | draw(anglemark2(M,D,P,29)); | ||
label("$d$",D+(-0.75,0.095)); | label("$d$",D+(-0.75,0.095)); | ||
− | |||
label("$R$",R,N,f); | label("$R$",R,N,f); | ||
− | label("$M$",M+(-. | + | label("$M$",M+(-.07,.07),f); |
− | label("$N$",Np+(-. | + | label("$N$",Np+(-.08,.15),f); |
label("$P$",P,S,f); | label("$P$",P,S,f); | ||
label("$S$",Sp,S,f); | label("$S$",Sp,S,f); | ||
label("$Q$",Q,S,f); | label("$Q$",Q,S,f); | ||
label("$D$",D,S,f);</asy> | label("$D$",D,S,f);</asy> | ||
− | Looking at triangle PRQ, we have <math>\angle RPD+\angle RQS+\angle MRN=180</math> and from the given statement <math>\angle NMR=\frac{1}{2}\angle MRN</math>, so looking at triangle | + | Looking at triangle PRQ, we have <math>\angle RPD+\angle RQS+\angle MRN=180</math> and from the given statement <math>\angle NMR=\frac{1}{2}\angle MRN</math>, so looking at triangle MOR <math>\angle NMR=90-\frac{\angle RPD+\angle RQS}{2}</math> |
Revision as of 19:42, 14 April 2016
Problem 37
Given with bisecting , extended to and a right angle, then:
Partial Solution
Looking at triangle PRQ, we have and from the given statement , so looking at triangle MOR