Difference between revisions of "1982 AHSME Problems/Problem 26"
Katzrockso (talk | contribs) (→Partial and Wrong Solution) |
Katzrockso (talk | contribs) (→Partial and Wrong Solution) |
||
Line 10: | Line 10: | ||
== Partial and Wrong Solution == | == Partial and Wrong Solution == | ||
− | From the definition of bases we have <math>24+c | + | From the definition of bases we have <math>k^2=512a+64b+24+c</math>, and <math>k^2\equiv 24+c \pmod{64}</math> |
− | If <math>k=8j</math>, then <math>(8j)^2\equiv64j^2\equiv0 \pmod{64}</math> | + | If <math>k=8j</math>, then <math>(8j)^2\equiv64j^2\equiv0 \pmod{64}</math>, which makes <math>c\equiv -24\pmod{64}</math> |
If <math>k=8j+1</math>, then <math>(8j+1)\equiv 64j^2+16j+1\equiv 16j+1\equiv 24+c \implies 16j\equiv 23+c</math>, which clearly can only have the solution <math>c\equiv 7 \pmod{64}</math>, for <math>j\equiv 1</math>. This makes <math>k=9</math>, which doesn't have 4 digits in base 8 | If <math>k=8j+1</math>, then <math>(8j+1)\equiv 64j^2+16j+1\equiv 16j+1\equiv 24+c \implies 16j\equiv 23+c</math>, which clearly can only have the solution <math>c\equiv 7 \pmod{64}</math>, for <math>j\equiv 1</math>. This makes <math>k=9</math>, which doesn't have 4 digits in base 8 | ||
Line 18: | Line 18: | ||
If <math>k=8j+2</math>, then <math>(8j+1)\equiv 64j^2+32j+4\equiv 32j+4\equiv 24+c \implies 32j\equiv 20+c</math>, which clearly can only have the solution <math>c\equiv 12 \pmod{64}</math>, for <math>j\equiv 1</math>. <math>c</math> is greater than <math>9</math>, and thus, this solution is invalid. | If <math>k=8j+2</math>, then <math>(8j+1)\equiv 64j^2+32j+4\equiv 32j+4\equiv 24+c \implies 32j\equiv 20+c</math>, which clearly can only have the solution <math>c\equiv 12 \pmod{64}</math>, for <math>j\equiv 1</math>. <math>c</math> is greater than <math>9</math>, and thus, this solution is invalid. | ||
− | If <math>k=8j+3</math>, then <math>(8j+ | + | If <math>k=8j+3</math>, then <math>(8j+3)\equiv 64j^2+48j+9\equiv 48j+9\equiv 24+c \implies 48j\equiv 15+c</math>, which clearly has no solutions for <math>0\leq c<10</math>. |
− | Similarly, <math>k=8j+4</math> | + | Similarly, <math>k=8j+4</math> yields no solutions |
If <math>k=8j+5</math>, then <math>(8j+5)\equiv 64j^2+80j-1\equiv 16j-1\equiv 24+c \implies 16j\equiv 25+c</math>, which clearly can only have the solution <math>c\equiv 9 \pmod{64}</math>, for <math>j\equiv 1</math>. This makes <math>k=13</math>, which doesn't have 4 digits in base 8. | If <math>k=8j+5</math>, then <math>(8j+5)\equiv 64j^2+80j-1\equiv 16j-1\equiv 24+c \implies 16j\equiv 25+c</math>, which clearly can only have the solution <math>c\equiv 9 \pmod{64}</math>, for <math>j\equiv 1</math>. This makes <math>k=13</math>, which doesn't have 4 digits in base 8. | ||
If <math>k=8j+6</math>, then <math>(8j+6)\equiv 64j^2+96j+1\equiv 32j+36\equiv 24+c \implies 16j\equiv 23+c</math>, which clearly can only have the solution <math>c\equiv 7 \pmod{64}</math>, for <math>j\equiv 1</math>. This makes <math>k=9</math>, which doesn't have 4 digits in base 8 | If <math>k=8j+6</math>, then <math>(8j+6)\equiv 64j^2+96j+1\equiv 32j+36\equiv 24+c \implies 16j\equiv 23+c</math>, which clearly can only have the solution <math>c\equiv 7 \pmod{64}</math>, for <math>j\equiv 1</math>. This makes <math>k=9</math>, which doesn't have 4 digits in base 8 |
Revision as of 13:04, 15 April 2016
Problem 26
If the base representation of a perfect square is , where , then equals
Partial and Wrong Solution
From the definition of bases we have , and
If , then , which makes
If , then , which clearly can only have the solution , for . This makes , which doesn't have 4 digits in base 8
If , then , which clearly can only have the solution , for . is greater than , and thus, this solution is invalid.
If , then , which clearly has no solutions for .
Similarly, yields no solutions
If , then , which clearly can only have the solution , for . This makes , which doesn't have 4 digits in base 8.
If , then , which clearly can only have the solution , for . This makes , which doesn't have 4 digits in base 8