Difference between revisions of "1975 AHSME Problems/Problem 12"

(Created page with "We can factor <math>a^3-b^3=19x^3</math> into: <cmath>(a-b)(a^2+ab+b^2)=19x^3.</cmath> Substituting yields: <cmath>x(a^2+ab+b^2)=19x^3</cmath> <cmath>a^2+ab+b^2=19x^2.</cmath>...")
 
Line 1: Line 1:
 +
== Problem 12==
 +
If <math>a \neq b, a^3 - b^3 = 19x^3</math>, and <math>a-b = x</math>, which of the following conclusions is correct?
 +
 +
<math>\textbf{(A)}\ a=3x \qquad  \textbf{(B)}\ a=3x \text{ or } a = -2x \qquad  \textbf{(C)}\ a=-3x \text{ or } a = 2x \qquad \ \textbf{(D)}\ a=3x \text{ or } a=2x \qquad  \textbf{(E)}\ a=2x</math>
 +
 +
==Solution==
 
We can factor <math>a^3-b^3=19x^3</math> into:
 
We can factor <math>a^3-b^3=19x^3</math> into:
 
<cmath>(a-b)(a^2+ab+b^2)=19x^3.</cmath>
 
<cmath>(a-b)(a^2+ab+b^2)=19x^3.</cmath>

Revision as of 05:59, 17 May 2016

Problem 12

If $a \neq b, a^3 - b^3 = 19x^3$, and $a-b = x$, which of the following conclusions is correct?

$\textbf{(A)}\ a=3x \qquad  \textbf{(B)}\ a=3x \text{ or } a = -2x \qquad  \textbf{(C)}\ a=-3x \text{ or } a = 2x \qquad \\ \textbf{(D)}\ a=3x \text{ or } a=2x \qquad  \textbf{(E)}\ a=2x$

Solution

We can factor $a^3-b^3=19x^3$ into: \[(a-b)(a^2+ab+b^2)=19x^3.\] Substituting yields: \[x(a^2+ab+b^2)=19x^3\] \[a^2+ab+b^2=19x^2.\] This is equal to: \[(a-b)^2+3ab=19x^2\] \[x^2+3ab=19x^2\] \[ab=6x^2.\] Checking with the possible answers, along with $a-b=x$ yields the only answer to be \box{(B): $a=3x$ or $a=-2x$}.