Difference between revisions of "1989 USAMO Problems/Problem 3"
(New page: ==Problem== Let <math>P(z)= z^n + c_1 z^{n-1} + c_2 z^{n-2} + \cdots + c_n</math> be a polynomial in the complex variable <math>z</math>, with real coefficients <math>c_k</math>. Suppose t...) |
m (→Resources) |
||
(6 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>P(z)= z^n + c_1 z^{n-1} + c_2 z^{n-2} + \cdots + c_n</math> be a polynomial in the complex variable <math>z</math>, with real coefficients <math>c_k</math>. Suppose that <math>|P(i)| < 1</math>. Prove that there exist real numbers <math>a</math> and <math>b</math> such that <math>P(a + bi) = 0</math> and <math>(a^2 + b^2 + 1)^2 < 4 b^2 + 1</math>. | + | Let <math>P(z)= z^n + c_1 z^{n-1} + c_2 z^{n-2} + \cdots + c_n</math> be a [[polynomial]] in the complex variable <math>z</math>, with real coefficients <math>c_k</math>. Suppose that <math>|P(i)| < 1</math>. Prove that there exist real numbers <math>a</math> and <math>b</math> such that <math>P(a + bi) = 0</math> and <math>(a^2 + b^2 + 1)^2 < 4 b^2 + 1</math>. |
==Solution== | ==Solution== | ||
− | {{ | + | Let <math>z_1, \dotsc, z_n</math> be the (not necessarily distinct) roots of <math>P</math>, so that |
+ | <cmath> P(z) = \prod_{j=1}^n (z- z_j) . </cmath> | ||
+ | Since all the coefficients of <math>P</math> are real, it follows that if <math>w</math> is a root of <math>P</math>, then <math>P( \overline{w}) = \overline{ P(w)} = 0</math>, so <math>\overline{w}</math>, the [[complex conjugate]] of <math>w</math>, is also a root of <math>P</math>. | ||
− | == | + | Since |
+ | <cmath> \lvert i- z_1 \rvert \cdot \lvert i - z_2 \rvert \dotsm \lvert i - z_n \rvert = \lvert P(i) \rvert < 1, </cmath> | ||
+ | it follows that for some (not necessarily distinct) conjugates <math>z_i</math> and <math>z_j</math>, | ||
+ | <cmath> \lvert z_i-i \rvert \cdot \lvert z_j-i \rvert < 1. </cmath> | ||
+ | Let <math>z_i = a+bi</math> and <math>z_j = a-bi</math>, for real <math>a,b</math>. We note that | ||
+ | <cmath> (a+b+1)^2 - (a+b-1)^2 = 4a + 4b . </cmath> | ||
+ | Thus | ||
+ | <cmath> \begin{align*} | ||
+ | (a^2+b^2+1)^2 &= (a^2+b^2-1)^2 + 4a^2 + 4b^2 = \lvert a^2 + b^2 - 1 - 2ai \rvert ^2 + 4b^2 \ | ||
+ | &= \lvert (a-i)^2 - (bi)^2 \rvert^2 + 4b^2 \ | ||
+ | &= \bigl( \lvert a+bi - i \rvert \cdot \lvert a-bi -i \rvert \bigr)^2 + 4b^2 \ | ||
+ | &= \bigl( \lvert z_i - i \rvert \cdot \lvert z_j - i \rvert \bigr)^2 + 4b^2 < 1+4b^2. | ||
+ | \end{align*} </cmath> | ||
+ | Since <math>P(a+bi) = P(z_i) = 0</math>, these real numbers <math>a,b</math> satisfy the problem's conditions. <math>\blacksquare</math> | ||
− | * [[ | + | == See Also == |
+ | |||
+ | {{USAMO box|year=1989|num-b=2|num-a=4}} | ||
+ | |||
+ | * [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=356637#356637 Discussion on AoPS/MathLinks] | ||
+ | {{MAA Notice}} | ||
+ | |||
+ | |||
+ | [[Category:Olympiad Algebra Problems]] |
Latest revision as of 18:11, 18 July 2016
Problem
Let be a polynomial in the complex variable , with real coefficients . Suppose that . Prove that there exist real numbers and such that and .
Solution
Let be the (not necessarily distinct) roots of , so that Since all the coefficients of are real, it follows that if is a root of , then , so , the complex conjugate of , is also a root of .
Since it follows that for some (not necessarily distinct) conjugates and , Let and , for real . We note that Thus Since , these real numbers satisfy the problem's conditions.
See Also
1989 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.