Difference between revisions of "2017 AMC 10A Problems/Problem 6"
WhaleVomit (talk | contribs) (Created page with "Joy has <math>30</math> thin rods, one each of every integer length from <math>1</math> cm through <math>30</math> cm. She places the rods with lengths <math>3</math> cm, <mat...") |
WhaleVomit (talk | contribs) |
||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
Joy has <math>30</math> thin rods, one each of every integer length from <math>1</math> cm through <math>30</math> cm. She places the rods with lengths <math>3</math> cm, <math>7</math> cm, and <math>15</math> cm on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod? | Joy has <math>30</math> thin rods, one each of every integer length from <math>1</math> cm through <math>30</math> cm. She places the rods with lengths <math>3</math> cm, <math>7</math> cm, and <math>15</math> cm on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod? | ||
<math>\text{(A) 16}\qquad\text{(B) 17}\qquad\text{(C) 18}\qquad\text{(D) 19}\qquad\text{(E) 20}</math> | <math>\text{(A) 16}\qquad\text{(B) 17}\qquad\text{(C) 18}\qquad\text{(D) 19}\qquad\text{(E) 20}</math> | ||
+ | |||
+ | ==Solution== |
Revision as of 14:28, 8 February 2017
Problem
Joy has thin rods, one each of every integer length from cm through cm. She places the rods with lengths cm, cm, and cm on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod?