Difference between revisions of "2004 AMC 8 Problems/Problem 25"
(→Solution 2) |
(→Solution 2) |
||
Line 21: | Line 21: | ||
==Solution 2== | ==Solution 2== | ||
− | Find the area of the overlapping squares. <math>2 \cdot 4^2 - 2^2=28</math>. Now, we find the chord of the circle to be 2, so then the radius of the circle would be <math>\sqrt | + | Find the area of the overlapping squares. <math>2 \cdot 4^2 - 2^2=28</math>. Now, we find the chord of the circle to be 2, so then the radius of the circle would be <math>\sqrt{2 pi}</math> |
==See Also== | ==See Also== | ||
{{AMC8 box|year=2004|num-b=24|after=Last <br /> Question}} | {{AMC8 box|year=2004|num-b=24|after=Last <br /> Question}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 12:08, 3 June 2017
Contents
[hide]Problem
Two squares intersect at right angles, bisecting their intersecting sides, as shown. The circle's diameter is the segment between the two points of intersection. What is the area of the shaded region created by removing the circle from the squares?
Solution
If the circle was shaded in, the intersection of the two squares would be a smaller square with half the sidelength, . The area of this region would be the two larger squares minus the area of the intersection, the smaller square. This is .
The diagonal of this smaller square created by connecting the two points of intersection of the squares is the diameter of the circle. This value can be found with Pythagorean or a circle to be . The radius is half the diameter, . The area of the circle is .
The area of the shaded region is the area of the two squares minus the area of the circle which is .
Solution 2
Find the area of the overlapping squares. . Now, we find the chord of the circle to be 2, so then the radius of the circle would be
See Also
2004 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.