Difference between revisions of "1990 USAMO Problems/Problem 5"
(→Solution 2) |
m (→Solution 2) |
||
Line 9: | Line 9: | ||
== Solution 2 == | == Solution 2 == | ||
− | Define <math>A'</math> as the foot of the altitude from <math>A</math> to <math>BC</math>. Then, <math>AA' \cap BB' \cap CC'</math> is the orthocenter. We will denote this point as <math>H</math> | + | Define <math>A'</math> as the foot of the altitude from <math>A</math> to <math>BC</math>. Then, <math>AA' \cap BB' \cap CC'</math> is the orthocenter. We will denote this point as <math>H</math>. |
Since <math>\angle AA'C</math> and <math>\angle AA'B</math> are both <math>90^{\circ}</math>, <math>A'</math> lies on the circles with diameters <math>AC</math> and <math>AB</math>. | Since <math>\angle AA'C</math> and <math>\angle AA'B</math> are both <math>90^{\circ}</math>, <math>A'</math> lies on the circles with diameters <math>AC</math> and <math>AB</math>. | ||
Revision as of 16:34, 19 July 2017
Contents
[hide]Problem
An acute-angled triangle is given in the plane. The circle with diameter intersects altitude and its extension at points and , and the circle with diameter intersects altitude and its extensions at and . Prove that the points lie on a common circle.
Solution 1
Let be the intersection of the two circles (other than ). is perpendicular to both , implying , , are collinear. Since is the foot of the altitude from : , , are concurrent, where is the orthocentre.
Now, is also the intersection of , which means that , , are concurrent. Since , , , and , , , are cyclic, , , , are cyclic by the radical axis theorem.
Solution 2
Define as the foot of the altitude from to . Then, is the orthocenter. We will denote this point as . Since and are both , lies on the circles with diameters and .
Now we use the Power of a Point theorem with respect to point . From the circle with diameter we get . From the circle with diameter we get . Thus, we conclude that , which implies that , , , and all lie on a circle.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1990 USAMO (Problems • Resources) | ||
Preceded by Problem 4 |
Followed by Last Question | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.