Difference between revisions of "Range"
m |
|||
Line 1: | Line 1: | ||
− | Let <math>A</math> and <math>B</math> be any | + | Let <math>A</math> and <math>B</math> be any [[set]]s and let <math>f:A\to B</math> be any [[function]] between them, so that <math>A</math> is the [[domain]] of <math>f</math> and <math>B</math> is the [[codomain]]. Then <math>\{b\in B\mid \mathrm{there\ is\ some\ } a\in A\mathrm{\ such\ that\ } f(a)=b\}</math> is called the '''range''' or '''image''' of <math>f</math>. |
Thus, if we have <math>f: \mathbb{R} \to \mathbb{R}</math> given by <math>f(x) = x^2</math>, the range of <math>f</math> is the set of [[nonnegative]] reals. | Thus, if we have <math>f: \mathbb{R} \to \mathbb{R}</math> given by <math>f(x) = x^2</math>, the range of <math>f</math> is the set of [[nonnegative]] reals. | ||
+ | |||
+ | |||
+ | A function is a [[surjection]] exactly when the range is equal to the codomain. |
Revision as of 10:29, 31 July 2006
Let and be any sets and let be any function between them, so that is the domain of and is the codomain. Then is called the range or image of .
Thus, if we have given by , the range of is the set of nonnegative reals.
A function is a surjection exactly when the range is equal to the codomain.