Difference between revisions of "2007 AMC 10B Problems/Problem 2"

m (Solution)
m (Solution)
Line 11: Line 11:
  
 
==Solution 2==
 
==Solution 2==
Note that <math>\begin{align*}
+
Note that
(a \star b) - (b \star a) &= (a+b)b - (b+a)a \
+
<math>(a \star b) - (b \star a) = (a+b)b - (b+a)a
&= (a+b)(b-a) \
+
= (a+b)(b-a)
&= b^2 - a^2 \
+
= b^2 - a^2
&= 5^2 - 3^2 = \boxed{\textbf{(E) }16}
+
= 5^2 - 3^2 = \boxed{\textbf{(E) }16}</math>
\end{align*}</math>
 
  
 
==See Also==
 
==See Also==

Revision as of 22:35, 12 January 2018

Problem

Define the operation $\star$ by $a \star b = (a+b)b.$ What is $(3 \star 5) - (5 \star 3)?$

$\textbf{(A) } -16 \qquad\textbf{(B) } -8 \qquad\textbf{(C) } 0 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 16$

Solution 1

Substitute and simplify. \[(3+5)5 - (5+3)3 = (3+5)2 = (8)2 = \boxed{\textbf{(E) }16}\]

Solution 2

Note that $(a \star b) - (b \star a) = (a+b)b - (b+a)a = (a+b)(b-a) = b^2 - a^2 = 5^2 - 3^2 = \boxed{\textbf{(E) }16}$

See Also

2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png