Difference between revisions of "Mock AIME 1 2006-2007 Problems/Problem 9"

m (Solution 1)
(Solution 1)
Line 20: Line 20:
 
We seek <math>\sum t</math>, or the negative of the coefficient of <math>t^9</math> divided by the coefficient of <math>t^10</math>, which is <math>2^{10}\cdot10/(2^{10}-1)=2^{11}\cdot5/(2^{10}-1)</math> and <math>2^{10}-1=33*31=3*11*31</math>.  
 
We seek <math>\sum t</math>, or the negative of the coefficient of <math>t^9</math> divided by the coefficient of <math>t^10</math>, which is <math>2^{10}\cdot10/(2^{10}-1)=2^{11}\cdot5/(2^{10}-1)</math> and <math>2^{10}-1=33*31=3*11*31</math>.  
  
Therefore the answer is <math>\box{45}</math>.
+
Therefore the answer is <math>\boxed{45}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 16:18, 11 February 2018

Problem

Revised statement

Let $a_{n}$ be a geometric sequence of complex numbers with $a_{0}=1024$ and $a_{10}=1$, and let $S$ denote the infinite sum $S = a_{10}+a_{11}+a_{12}+...$. If the sum of all possible distinct values of $S$ is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers, compute the sum of the positive prime factors of $n$.

Original statement

Let $a_{n}$ be a geometric sequence for $n\in\mathbb{Z}$ with $a_{0}=1024$ and $a_{10}=1$. Let $S$ denote the infinite sum: $a_{10}+a_{11}+a_{12}+...$. If the sum of all distinct values of $S$ is $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers, then compute the sum of the positive prime factors of $n$.

Solutions

Solution 1

Let the ratio of consecutive terms of the sequence be $r \in \mathbb{C}$. Then we have by the given that $1 = a_{10} = r^{10} a_0 = 1024r^{10}$ so $r^{10} = 2^{-10}$ and $r = \frac \omega 2$, where $\omega$ can be any of the tenth roots of unity.

Then the sum $S = a_{10} + a_{11} + \ldots = 1 + r + r^2 +\ldots = \frac{1}{1-r}$ has value $\frac 1{1 - \omega / 2}$. Different choices of $\omega$ clearly lead to different values for $S$, so we don't need to worry about the distinctness condition in the problem. Then the value we want is $\sum_{\omega^{10} = 1} \sum_{i = 10}^\infty 1024 \left(\frac\omega2\right)^i  = 1024 \sum_{i = 10}^\infty 2^{-i} \sum_{\omega^{10}=1} \omega^i$. Now, recall that if $z_1, z_2, \ldots, z_n$ are the $n$ $n$th roots of unity then for any integer $m$, $z_1^m + \ldots + z_n^m$ is 0 unless $n | m$ in which case it is 1. Thus this simplifies to

$\sum\frac1{1-z/2}$ where $z^{10}=1$.

Let $t=\frac1{1-z/2}\implies z=2(1-1/t)$,

and $2^{10}(1-1/t)^{10}-1=0\implies2^{10}(t-1)^{10}-t^{10}=0$

We seek $\sum t$, or the negative of the coefficient of $t^9$ divided by the coefficient of $t^10$, which is $2^{10}\cdot10/(2^{10}-1)=2^{11}\cdot5/(2^{10}-1)$ and $2^{10}-1=33*31=3*11*31$.

Therefore the answer is $\boxed{45}$.

See Also