Difference between revisions of "1997 JBMO Problems/Problem 4"

(WIP Solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
''(Romania)'' Determine the triangle with sides <math>a,b,c</math> and circumradius <math>R</math> for which <math>R(b+c) = a\sqrt{bc}</math>.
+
Determine the triangle with sides <math>a,b,c</math> and circumradius <math>R</math> for which <math>R(b+c) = a\sqrt{bc}</math>.
  
 
== Solution ==
 
== Solution ==
  
== See also ==
+
Solving for <math>R</math> yields <math>R = \tfrac{a\sqrt{bc}}{b+c}</math>.  We can substitute <math>R</math> into the area formula <math>A = \tfrac{abc}{4R}</math> to get
 +
<cmath>\begin{align*}
 +
A &= \frac{abc}{4 \cdot \tfrac{a\sqrt{bc}}{b+c} } \
 +
&= \frac{abc}{4a\sqrt{bc}} \cdot (b+c) \
 +
&= \frac{(b+c)\sqrt{bc}}{4}.
 +
\end{align*}</cmath>
 +
We also know that <math>A = \tfrac{1}{2}ab \sin(\theta)</math>, where <math>\theta</math> is the angle between sides <math>b</math> and <math>c.</math>  Substituting this yields
 +
<cmath>\begin{align*}
 +
\tfrac{1}{2}ab \sin(\theta) &= \frac{(b+c)\sqrt{bc}}{4} \
 +
2\sqrt{bc} \cdot \sin(\theta) &= b+c \
 +
\sin(\theta) &= \frac{b+c}{2\sqrt{bc}}
 +
\end{align*}</cmath>
 +
Since <math>\theta</math> is inside a triangle, <math>0 < \sin{\theta} \le 1</math>.
 +
 
 +
 
 +
== See Also ==
  
 
{{JBMO box|year=1997|num-b=3|num-a=5}}
 
{{JBMO box|year=1997|num-b=3|num-a=5}}
  
 
[[Category:Intermediate Geometry Problems]]
 
[[Category:Intermediate Geometry Problems]]

Revision as of 13:58, 4 August 2018

Problem

Determine the triangle with sides $a,b,c$ and circumradius $R$ for which $R(b+c) = a\sqrt{bc}$.

Solution

Solving for $R$ yields $R = \tfrac{a\sqrt{bc}}{b+c}$. We can substitute $R$ into the area formula $A = \tfrac{abc}{4R}$ to get \begin{align*} A &= \frac{abc}{4 \cdot \tfrac{a\sqrt{bc}}{b+c} } \\ &= \frac{abc}{4a\sqrt{bc}} \cdot (b+c) \\ &= \frac{(b+c)\sqrt{bc}}{4}. \end{align*} We also know that $A = \tfrac{1}{2}ab \sin(\theta)$, where $\theta$ is the angle between sides $b$ and $c.$ Substituting this yields \begin{align*} \tfrac{1}{2}ab \sin(\theta) &= \frac{(b+c)\sqrt{bc}}{4} \\ 2\sqrt{bc} \cdot \sin(\theta) &= b+c \\ \sin(\theta) &= \frac{b+c}{2\sqrt{bc}} \end{align*} Since $\theta$ is inside a triangle, $0 < \sin{\theta} \le 1$.


See Also

1997 JBMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5
All JBMO Problems and Solutions