Difference between revisions of "Mock AIME 2 2006-2007 Problems/Problem 12"

(Problem)
m
Line 4: Line 4:
  
 
Note*: <math>\displaystyle[ABC]</math> and <math>\displaystyle[ADB]</math> refer to the areas of triangles <math>\displaystyle ABC</math> and <math>\displaystyle ADB.</math>
 
Note*: <math>\displaystyle[ABC]</math> and <math>\displaystyle[ADB]</math> refer to the areas of triangles <math>\displaystyle ABC</math> and <math>\displaystyle ADB.</math>
 +
 +
==Solution==
 +
{{solution}}
 +
 +
----
 +
 +
*[[Mock AIME 2 2006-2007/Problem 11 | Previous Problem]]
 +
 +
*[[Mock AIME 2 2006-2007/Problem 13 | Next Problem]]
 +
 +
*[[Mock AIME 2 2006-2007]]
 +
  
 
== Problem Source ==
 
== Problem Source ==
 
AoPS users 4everwise and Altheman collaborated to create this problem.
 
AoPS users 4everwise and Altheman collaborated to create this problem.

Revision as of 18:49, 22 August 2006

Problem

In quadrilateral $\displaystyle ABCD,$ $\displaystyle m \angle DAC= m\angle DBC$ and $\displaystyle \frac{[ADB]}{[ABC]}=\frac12.$ If $\displaystyle AD=4,$ $\displaystyle BC=6$, $\displaystyle BO=1,$ and the area of $\displaystyle ABCD$ is $\displaystyle \frac{a\sqrt{b}}{c},$ where $\displaystyle a,b,c$ are relatively prime positive integers, find $\displaystyle a+b+c.$


Note*: $\displaystyle[ABC]$ and $\displaystyle[ADB]$ refer to the areas of triangles $\displaystyle ABC$ and $\displaystyle ADB.$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.



Problem Source

AoPS users 4everwise and Altheman collaborated to create this problem.