Difference between revisions of "2008 AIME II Problems/Problem 9"
(→Solution 2: fixing messed up grammar) |
m (→Solution 2: oops) |
||
Line 16: | Line 16: | ||
https://www.desmos.com/calculator/febtiheosz | https://www.desmos.com/calculator/febtiheosz | ||
=== Solution 2 === | === Solution 2 === | ||
− | Let the particle's position be represented by a complex number. Recall that multiplying a number by cis<math>\left( \theta \right)</math> rotates the object in the complex plane by <math>\theta</math> counterclockwise. In this case, we use cis(<math> | + | Let the particle's position be represented by a complex number. Recall that multiplying a number by cis<math>\left( \theta \right)</math> rotates the object in the complex plane by <math>\theta</math> counterclockwise. In this case, we use cis(<math>\frac{\pi}{4}</math>). Therefore, applying the rotation and shifting the coordinates by 10 in the positive x direction in the complex plane results to |
<center><math>a_{150} = (((5a + 10)a + 10)a + 10 \ldots) = 5a^{150} + 10 a^{149} + 10a^{148}+ \ldots + 10</math></center> | <center><math>a_{150} = (((5a + 10)a + 10)a + 10 \ldots) = 5a^{150} + 10 a^{149} + 10a^{148}+ \ldots + 10</math></center> | ||
where a is cis<math>\left( \theta \right)</math>. By De-Moivre's theorem, <math>\left(cis( \theta \right)^n )</math>=cis<math>\left(n \theta \right)</math>. | where a is cis<math>\left( \theta \right)</math>. By De-Moivre's theorem, <math>\left(cis( \theta \right)^n )</math>=cis<math>\left(n \theta \right)</math>. |
Revision as of 21:07, 21 November 2018
Problem
A particle is located on the coordinate plane at . Define a move for the particle as a counterclockwise rotation of radians about the origin followed by a translation of units in the positive -direction. Given that the particle's position after moves is , find the greatest integer less than or equal to .
Contents
[hide]Solution
Solution 1
Let P(x, y) be the position of the particle on the xy-plane, r be the length OP where O is the origin, and be the inclination of OP to the x-axis. If (x', y') is the position of the particle after a move from P, then and . Let be the position of the particle after the nth move, where and . Then , . This implies , . Substituting and , we have and again for the first time. Thus, and . Hence, the final answer is
If you're curious, the points do eventually form an octagon and repeat. Seems counterintuitive, but believe it or not, it happens.
https://www.desmos.com/calculator/febtiheosz
Solution 2
Let the particle's position be represented by a complex number. Recall that multiplying a number by cis rotates the object in the complex plane by counterclockwise. In this case, we use cis(). Therefore, applying the rotation and shifting the coordinates by 10 in the positive x direction in the complex plane results to
where a is cis. By De-Moivre's theorem, =cis. Therefore,
Furthermore, . Thus, the final answer is
See also
2008 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.