Difference between revisions of "2008 AIME II Problems/Problem 9"
m (→Solution 2: oops) |
m (→Solution 2) |
||
Line 16: | Line 16: | ||
https://www.desmos.com/calculator/febtiheosz | https://www.desmos.com/calculator/febtiheosz | ||
=== Solution 2 === | === Solution 2 === | ||
− | Let the particle's position be represented by a complex number. Recall that multiplying a number by cis<math>\left( \theta \right)</math> rotates the object in the complex plane by <math>\theta</math> counterclockwise. In this case, we use cis(<math>\frac{\pi}{4}</math>). Therefore, applying the rotation and shifting the coordinates by 10 in the positive x direction in the complex plane results to | + | Let the particle's position be represented by a complex number. Recall that multiplying a number by cis<math>\left( \theta \right)</math> rotates the object in the complex plane by <math>\theta</math> counterclockwise. In this case, we use a = cis(<math>\frac{\pi}{4}</math>). Therefore, applying the rotation and shifting the coordinates by 10 in the positive x direction in the complex plane results to |
<center><math>a_{150} = (((5a + 10)a + 10)a + 10 \ldots) = 5a^{150} + 10 a^{149} + 10a^{148}+ \ldots + 10</math></center> | <center><math>a_{150} = (((5a + 10)a + 10)a + 10 \ldots) = 5a^{150} + 10 a^{149} + 10a^{148}+ \ldots + 10</math></center> | ||
where a is cis<math>\left( \theta \right)</math>. By De-Moivre's theorem, <math>\left(cis( \theta \right)^n )</math>=cis<math>\left(n \theta \right)</math>. | where a is cis<math>\left( \theta \right)</math>. By De-Moivre's theorem, <math>\left(cis( \theta \right)^n )</math>=cis<math>\left(n \theta \right)</math>. |
Revision as of 23:54, 21 November 2018
Problem
A particle is located on the coordinate plane at . Define a move for the particle as a counterclockwise rotation of radians about the origin followed by a translation of units in the positive -direction. Given that the particle's position after moves is , find the greatest integer less than or equal to .
Contents
[hide]Solution
Solution 1
Let P(x, y) be the position of the particle on the xy-plane, r be the length OP where O is the origin, and be the inclination of OP to the x-axis. If (x', y') is the position of the particle after a move from P, then and . Let be the position of the particle after the nth move, where and . Then , . This implies , . Substituting and , we have and again for the first time. Thus, and . Hence, the final answer is
If you're curious, the points do eventually form an octagon and repeat. Seems counterintuitive, but believe it or not, it happens.
https://www.desmos.com/calculator/febtiheosz
Solution 2
Let the particle's position be represented by a complex number. Recall that multiplying a number by cis rotates the object in the complex plane by counterclockwise. In this case, we use a = cis(). Therefore, applying the rotation and shifting the coordinates by 10 in the positive x direction in the complex plane results to
where a is cis. By De-Moivre's theorem, =cis. Therefore,
Furthermore, . Thus, the final answer is
See also
2008 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.