Difference between revisions of "2003 JBMO Problems/Problem 3"

(Created page with "==Problem== Let <math>D</math>, <math>E</math>, <math>F</math> be the midpoints of the arcs <math>BC</math>, <math>CA</math>, <math>AB</math> on the circumcircle of a triangl...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
Let <math>D</math>, <math>E</math>, <math>F</math> be the midpoints of the arcs <math>BC</math>, <math>CA</math>, <math>AB</math> on the circumcircle of a triangle <math>ABC</math> not containing the points <math>A</math>, <math>B</math>, <math>C</math>, respectively. Let the line <math>DE</math> meets <math>BC</math> and <math>CA</math> at <math>G</math> and <math>H</math>, and let <math>M</math> be the midpoint of the segment <math>GH</math>. Let the line <math>FD</math> meet <math>BC</math> and <math>AB</math> at <math>K</math> and <math>J</math>, and let <math>N</math> be the midpoint of the segment <math>KJ</math>.
+
Let <math>D</math>, <math>E</math>, <math>F</math> be the midpoints of the arcs <math>BC</math>, <math>CA</math>, <math>AB</math> on the circumcircle of a triangle <math>ABC</math> not containing the points <math>A</math>, <math>B</math>, <math>C</math>, respectively. Let the line <math>DE</math> meet <math>BC</math> and <math>CA</math> at <math>G</math> and <math>H</math>, and let <math>M</math> be the midpoint of the segment <math>GH</math>. Let the line <math>FD</math> meet <math>BC</math> and <math>AB</math> at <math>K</math> and <math>J</math>, and let <math>N</math> be the midpoint of the segment <math>KJ</math>.
  
 
a) Find the angles of triangle <math>DMN</math>;
 
a) Find the angles of triangle <math>DMN</math>;
Line 10: Line 10:
 
==Solution==
 
==Solution==
  
Let <math>FC</math>, <math>EB</math> intersect <math>DE</math>, <math>FD</math> at <math>M'</math>, <math>N'</math> respectively. We will prove first that <math>M' = M, N = N'</math> and that lines <math>AD</math>, <math>BE</math>, <math>FC</math> are altitudes of the <math>\triangle FDC</math>.
+
Let <math>FC</math>, <math>EB</math> intersect <math>DE</math>, <math>FD</math> at <math>M'</math>, <math>N'</math> respectively. We will prove first that <math>M' = M, N = N'</math> and that lines <math>AD</math>, <math>BE</math>, <math>FC</math> are altitudes of the <math>\triangle DEF</math>.
  
 
It's easy to see that lines <math>AD</math>, <math>BE</math> and <math>CF</math> form the internal angle bisectors of <math>\triangle ABC</math>.
 
It's easy to see that lines <math>AD</math>, <math>BE</math> and <math>CF</math> form the internal angle bisectors of <math>\triangle ABC</math>.
  
  
Consequently, we can determine the <math>\angle FDC</math> of <math>\triangle FDC</math> as being equal to <math>\angle FDA + \angle ADE = \angle C/2 + \angle B/2 = 90^{\circ} - \angle A/2</math>
+
Consequently, we can determine the <math>\angle FDE</math> of <math>\triangle DEF</math> as being equal to <math>\angle FDA + \angle ADE = \angle C/2 + \angle B/2 = 90^{\circ} - \angle A/2</math>
  
 
Also we have <math>\angle DFC = \angle A/2</math>, thus <math>\angle FM'D = 90^{\circ}</math>. Similarly <math>\angle EN'D = 90^{\circ}</math>.
 
Also we have <math>\angle DFC = \angle A/2</math>, thus <math>\angle FM'D = 90^{\circ}</math>. Similarly <math>\angle EN'D = 90^{\circ}</math>.
  
Thus <math>AD</math>, <math>BE</math>, <math>FC</math> are altitudes of the <math>\triangle FDC</math> with <math>P</math>, <math>N'</math>, <math>M'</math> respectively being the feet of the altitudes.
+
Thus <math>AD</math>, <math>BE</math>, <math>FC</math> are altitudes of the <math>\triangle DEF</math> with <math>P</math>, <math>N'</math>, <math>M'</math> respectively being the feet of the altitudes.
  
 
Now since <math>M'C</math> is internal bisector of <math>\angle HCG</math> and <math>CM'</math> is perpendicular to <math>GH</math>, we have that
 
Now since <math>M'C</math> is internal bisector of <math>\angle HCG</math> and <math>CM'</math> is perpendicular to <math>GH</math>, we have that
Line 29: Line 29:
 
Now lines <math>AD</math>, <math>BE</math> and <math>CF</math> intersect at point <math>Q</math>. So <math>Q</math> is the incenter of <math>\triangle ABC</math> and orthocenter of <math>\triangle DEF</math>.
 
Now lines <math>AD</math>, <math>BE</math> and <math>CF</math> intersect at point <math>Q</math>. So <math>Q</math> is the incenter of <math>\triangle ABC</math> and orthocenter of <math>\triangle DEF</math>.
  
Clearly, <math>QNDM</math> is a cyclic quadrilateral as the <math>N</math>, <math>M</math> are the feet of perpendiculars from <math>E</math> and <math>F</math>.
+
Clearly, <math>QNDM</math> is a cyclic quadrilateral as <math>N</math>, <math>M</math> are the feet of perpendiculars from <math>E</math> and <math>F</math>.
  
 
So, we have <math>\angle QNM = \angle QDM = \angle ADE = \angle B/2</math>.
 
So, we have <math>\angle QNM = \angle QDM = \angle ADE = \angle B/2</math>.
Line 43: Line 43:
 
<math>Part 1</math>: Angles of <math>\triangle DMN</math>:
 
<math>Part 1</math>: Angles of <math>\triangle DMN</math>:
  
Sincel <math>\angle QNM = \angle B/2, \angle DNM = 90^{\circ} - \angle B/2</math>.  
+
Since <math>\angle QNM = \angle B/2, \angle DNM = 90^{\circ} - \angle B/2</math>.  
 
Similarly <math>\angle NMD = 90^{\circ} - \angle C/2</math>.
 
Similarly <math>\angle NMD = 90^{\circ} - \angle C/2</math>.
 
Finally <math>\angle NDM = 90^{\circ} - \angle A/2</math>.
 
Finally <math>\angle NDM = 90^{\circ} - \angle A/2</math>.
Line 60: Line 60:
  
 
Thus we have <math>RN</math> = <math>RM</math> = <math>RD</math>. So <math>R</math> is the circumcenter of <math>\triangle DMN</math>.
 
Thus we have <math>RN</math> = <math>RM</math> = <math>RD</math>. So <math>R</math> is the circumcenter of <math>\triangle DMN</math>.
 +
 +
 +
<math>Kris17</math>

Latest revision as of 21:53, 13 December 2018

Problem

Let $D$, $E$, $F$ be the midpoints of the arcs $BC$, $CA$, $AB$ on the circumcircle of a triangle $ABC$ not containing the points $A$, $B$, $C$, respectively. Let the line $DE$ meet $BC$ and $CA$ at $G$ and $H$, and let $M$ be the midpoint of the segment $GH$. Let the line $FD$ meet $BC$ and $AB$ at $K$ and $J$, and let $N$ be the midpoint of the segment $KJ$.

a) Find the angles of triangle $DMN$;

b) Prove that if $P$ is the point of intersection of the lines $AD$ and $EF$, then the circumcenter of triangle $DMN$ lies on the circumcircle of triangle $PMN$.


Solution

Let $FC$, $EB$ intersect $DE$, $FD$ at $M'$, $N'$ respectively. We will prove first that $M' = M, N = N'$ and that lines $AD$, $BE$, $FC$ are altitudes of the $\triangle DEF$.

It's easy to see that lines $AD$, $BE$ and $CF$ form the internal angle bisectors of $\triangle ABC$.


Consequently, we can determine the $\angle FDE$ of $\triangle DEF$ as being equal to $\angle FDA + \angle ADE = \angle C/2 + \angle B/2 = 90^{\circ} - \angle A/2$

Also we have $\angle DFC = \angle A/2$, thus $\angle FM'D = 90^{\circ}$. Similarly $\angle EN'D = 90^{\circ}$.

Thus $AD$, $BE$, $FC$ are altitudes of the $\triangle DEF$ with $P$, $N'$, $M'$ respectively being the feet of the altitudes.

Now since $M'C$ is internal bisector of $\angle HCG$ and $CM'$ is perpendicular to $GH$, we have that $CM'$ is the perpendicular bisector of $GH$. Hence $M' = M$.

Similarly it can be shown that $BN'$ is the perpendicular bisector of $KJ$, and hence $N' = N$.


Now lines $AD$, $BE$ and $CF$ intersect at point $Q$. So $Q$ is the incenter of $\triangle ABC$ and orthocenter of $\triangle DEF$.

Clearly, $QNDM$ is a cyclic quadrilateral as $N$, $M$ are the feet of perpendiculars from $E$ and $F$.

So, we have $\angle QNM = \angle QDM = \angle ADE = \angle B/2$.

Similarly, since $PQNF$ is also a cyclic-quadrilateral, reasoning as above, $\angle QNP = \angle PFQ = \angle CFE = \angle B/2$.

Thus we have that $\angle QNM = \angle QNP$ and so $NQ$ is an internal bisector of $\angle PNM$. Reasoning in a similar fashion it can be proven that $PQ$ and $MQ$ are internal bisectors of other 2 angles of $\triangle PNM$.

Thus $Q$ also happens to be the incenter of $\triangle PNM$ in addition to being that of $\triangle ABC$.


$Part 1$: Angles of $\triangle DMN$:

Since $\angle QNM = \angle B/2, \angle DNM = 90^{\circ} - \angle B/2$. Similarly $\angle NMD = 90^{\circ} - \angle C/2$. Finally $\angle NDM = 90^{\circ} - \angle A/2$.


$Part 2$:

Let circumcircle of $\triangle PMN$ cut line $DQ$ at point $R$. Since $PMRN$ is a cyclic quadrilateral, we have $\angle RNM = \angle RPM = \angle A/2$.

Similarly, $\angle RMN = \angle RPN = \angle A/2$. Thus $RN$ = $RM$.

Now, $\angle RND = 90^{\circ} - (\angle A/2 + \angle B/2) = \angle C/2$

and $\angle RDN = \angle ADF = \angle C/2$. Thus $RN$ = $RD$.

Thus we have $RN$ = $RM$ = $RD$. So $R$ is the circumcenter of $\triangle DMN$.


$Kris17$