TEXTBOOKS FOR THE AMC 12
For over 25 years, students have used Art of Problem Solving textbooks as a central part of their AMC preparation.
LEARN MORE

Difference between revisions of "2019 AMC 12B Problems"

m (Problem 19)
 
(25 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 +
{{AMC12 Problems|year=2019|ab=B}}
 +
 
==Problem 1==
 
==Problem 1==
  
Line 9: Line 11:
 
==Problem 2==
 
==Problem 2==
  
Consider the statement, "If <math>n</math> is not prime, then <math>n-2</math> is prime." Which of the following values of <math>n</math> is a counterexample to this statement.
+
Consider the statement, "If <math>n</math> is not prime, then <math>n-2</math> is prime." Which of the following values of <math>n</math> is a counterexample to this statement?
  
 
<math>\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27</math>
 
<math>\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27</math>
Line 16: Line 18:
  
 
==Problem 3==
 
==Problem 3==
 +
 +
Which one of the following rigid transformations (isometries) maps the line segment <math>\overline{AB}</math> onto the line segment <math>\overline{A'B'}</math> so that the image of <math>A(-2,1)</math> is <math>A'(2,-1)</math> and the image of <math>B(-1,4)</math> is <math>B'(1,-4)?</math>
 +
 +
<math>\textbf{(A) } </math> reflection in the <math>y</math>-axis
 +
 +
<math>\textbf{(B) } </math> counterclockwise rotation around the origin by <math>90^{\circ}</math>
 +
 +
<math>\textbf{(C) } </math> translation by <math>3</math> units to the right and <math>5</math> units down
 +
 +
<math>\textbf{(D) } </math> reflection in the <math>x</math>-axis
 +
 +
<math>\textbf{(E) } </math> clockwise rotation about the origin by <math>180^{\circ}</math>
  
 
[[2019 AMC 12B Problems/Problem 3|Solution]]
 
[[2019 AMC 12B Problems/Problem 3|Solution]]
Line 28: Line 42:
 
==Problem 5==
 
==Problem 5==
  
Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either 12 pieces of red candy, 14 pieces of green candy, 15 pieces of blue candy, or <math>n</math> pieces of purple candy. A piece of purple candy costs 20 cents. What is the smallest possible value of <math>n</math>?
+
Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either <math>12</math> pieces of red candy, <math>14</math> pieces of green candy, <math>15</math> pieces of blue candy, or <math>n</math> pieces of purple candy. A piece of purple candy costs <math>20</math> cents. What is the smallest possible value of <math>n</math>?
  
 
<math>\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28</math>
 
<math>\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28</math>
Line 54: Line 68:
 
Let <math>f(x) = x^{2}(1-x)^{2}</math>. What is the value of the sum
 
Let <math>f(x) = x^{2}(1-x)^{2}</math>. What is the value of the sum
  
<math>f(\frac{1}{2019})-f(\frac{2}{2019})+f(\frac{3}{2019})-f(\frac{4}{2019})+\cdots </math>
+
<cmath>f \left(\frac{1}{2019} \right)-f \left(\frac{2}{2019} \right)+f \left(\frac{3}{2019} \right)-f \left(\frac{4}{2019} \right)+\cdots + f \left(\frac{2017}{2019} \right) - f \left(\frac{2018}{2019} \right)?</cmath>
 
 
<math>+ f(\frac{2017}{2019}) - f(\frac{2018}{2019})</math>?
 
  
 
<math>\textbf{(A) }0\qquad\textbf{(B) }\frac{1}{2019^{4}}\qquad\textbf{(C) }\frac{2018^{2}}{2019^{4}}\qquad\textbf{(D) }\frac{2020^{2}}{2019^{4}}\qquad\textbf{(E) }1</math>
 
<math>\textbf{(A) }0\qquad\textbf{(B) }\frac{1}{2019^{4}}\qquad\textbf{(C) }\frac{2018^{2}}{2019^{4}}\qquad\textbf{(D) }\frac{2020^{2}}{2019^{4}}\qquad\textbf{(E) }1</math>
Line 72: Line 84:
  
 
==Problem 10==
 
==Problem 10==
 +
 +
The figure below is a map showing <math>12</math> cities and <math>17</math> roads connecting certain pairs of cities. Paula wishes to travel along exactly <math>13</math> of those roads, starting at city <math>A</math> and ending at city <math>L,</math> without traveling along any portion of a road more than once. (Paula is allowed to visit a city more than once.)
 +
 +
<asy>
 +
import olympiad;
 +
unitsize(50);
 +
for (int i = 0; i < 3; ++i) {
 +
for (int j = 0; j < 4; ++j) {
 +
pair A = (j,i);
 +
dot(A);
 +
 +
}
 +
}
 +
for (int i = 0; i < 3; ++i) {
 +
for (int j = 0; j < 4; ++j) {
 +
if (j != 3) {
 +
draw((j,i)--(j+1,i));
 +
}
 +
if (i != 2) {
 +
draw((j,i)--(j,i+1));
 +
}
 +
}
 +
}
 +
label("$A$", (0,2), W);
 +
label("$L$", (3,0), E);
 +
</asy>
 +
 +
How many different routes can Paula take?
 +
 +
<math>\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3\qquad\textbf{(E) } 4</math>
  
 
[[2019 AMC 12B Problems/Problem 10|Solution]]
 
[[2019 AMC 12B Problems/Problem 10|Solution]]
Line 84: Line 126:
  
 
==Problem 12==
 
==Problem 12==
 +
 +
Right triangle <math>ACD</math> with right angle at <math>C</math> is constructed outwards on the hypotenuse <math>\overline{AC}</math> of isosceles right triangle <math>ABC</math> with leg length <math>1</math>, as shown, so that the two triangles have equal perimeters. What is <math>\sin(2\angle BAD)</math>?
 +
<asy>
 +
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */
 +
import graph; size(8.016233639805293cm);
 +
real labelscalefactor = 0.5; /* changes label-to-point distance */
 +
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
 +
pen dotstyle = black; /* point style */
 +
real xmin = -4.001920114613276, xmax = 4.014313525192017, ymin = -2.552570341575814, ymax = 5.6249093771911145;  /* image dimensions */
 +
 +
 +
draw((-1.6742337260757447,-1.)--(-1.6742337260757445,-0.6742337260757447)--(-2.,-0.6742337260757447)--(-2.,-1.)--cycle, linewidth(2.));
 +
draw((-1.7696484586262846,2.7696484586262846)--(-1.5392969172525692,3.)--(-1.7696484586262846,3.2303515413737154)--(-2.,3.)--cycle, linewidth(2.));
 +
/* draw figures */
 +
draw((-2.,3.)--(-2.,-1.), linewidth(2.));
 +
draw((-2.,-1.)--(2.,-1.), linewidth(2.));
 +
draw((2.,-1.)--(-2.,3.), linewidth(2.));
 +
draw((-0.6404058554606791,4.3595941445393205)--(-2.,3.), linewidth(2.));
 +
draw((-0.6404058554606791,4.3595941445393205)--(2.,-1.), linewidth(2.));
 +
label("$D$",(-0.9382446143428628,4.887784444795223),SE*labelscalefactor,fontsize(14));
 +
label("$A$",(1.9411496528285788,-1.0783204767840298),SE*labelscalefactor,fontsize(14));
 +
label("$B$",(-2.5046350956841272,-0.9861798602345433),SE*labelscalefactor,fontsize(14));
 +
label("$C$",(-2.5737405580962416,3.5747806589650395),SE*labelscalefactor,fontsize(14));
 +
label("$1$",(-2.665881174645728,1.2712652452278765),SE*labelscalefactor,fontsize(14));
 +
label("$1$",(-0.3393306067712029,-1.3547423264324894),SE*labelscalefactor,fontsize(14));
 +
/* dots and labels */
 +
dot((-2.,3.),linewidth(4.pt) + dotstyle);
 +
dot((-2.,-1.),linewidth(4.pt) + dotstyle);
 +
dot((2.,-1.),linewidth(4.pt) + dotstyle);
 +
dot((-0.6404058554606791,4.3595941445393205),linewidth(4.pt) + dotstyle);
 +
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
 +
/* end of picture */
 +
</asy>
 +
 +
<math>\textbf{(A) } \dfrac{1}{3}  \qquad\textbf{(B) } \dfrac{\sqrt{2}}{2} \qquad\textbf{(C) } \dfrac{3}{4} \qquad\textbf{(D) } \dfrac{7}{9} \qquad\textbf{(E) }  \dfrac{\sqrt{3}}{2}</math>
  
 
[[2019 AMC 12B Problems/Problem 12|Solution]]
 
[[2019 AMC 12B Problems/Problem 12|Solution]]
Line 89: Line 166:
 
==Problem 13==
 
==Problem 13==
  
A red ball and a green ball are randomly and independently tossed into bins numbered with positive integers so that for each ball, the probability that it is tossed into bin <math>k</math> is <math>2^{-k}</math> for <math>k=1,2,3,\ldots.</math> What is the probability that the red ball is tossed into a higher-numbered bin than the green ball?
+
A red ball and a green ball are randomly and independently tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin <math>k</math> is <math>2^{-k}</math> for <math>k = 1,2,3....</math> What is the probability that the red ball is tossed into a higher-numbered bin than the green ball?<br>
  
 
<math>\textbf{(A) } \frac{1}{4} \qquad\textbf{(B) } \frac{2}{7} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{3}{8} \qquad\textbf{(E) } \frac{3}{7}</math>
 
<math>\textbf{(A) } \frac{1}{4} \qquad\textbf{(B) } \frac{2}{7} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{3}{8} \qquad\textbf{(E) } \frac{3}{7}</math>
Line 105: Line 182:
 
==Problem 15==
 
==Problem 15==
  
As shown in the figure, line segment <math>\overline{AD}</math> is trisected by points <math>B</math> and <math>C</math> so that <math>AB=BC=CD=2.</math> Three semicircles of radius <math>1,</math> <math>\overarc{AEB},\overarc{BFC},</math> and <math>\overarc{CGD},</math> have their diameters on <math>\overline{AD},</math> and are tangent to line <math>EG</math> at <math>E,F,</math> and <math>G,</math> respectively. A circle of radius <math>2</math> has its center on <math>F. </math> The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form
+
As shown in the figure, line segment <math>\overline{AD}</math> is trisected by points <math>B</math> and <math>C</math> so that <math>AB=BC=CD=2.</math> Three semicircles of radius <math>1,</math> <math>\overarc{AEB},</math> <math>\overarc{BFC},</math> and <math>\overarc{CGD},</math> have their diameters on <math>\overline{AD},</math> and are tangent to line <math>EG</math> at <math>E,F,</math> and <math>G,</math> respectively. A circle of radius <math>2</math> has its center on <math>F. </math> The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form
 
<cmath>\frac{a}{b}\cdot\pi-\sqrt{c}+d,</cmath>where <math>a,b,c,</math> and <math>d</math> are positive integers and <math>a</math> and <math>b</math> are relatively prime. What is <math>a+b+c+d</math>?
 
<cmath>\frac{a}{b}\cdot\pi-\sqrt{c}+d,</cmath>where <math>a,b,c,</math> and <math>d</math> are positive integers and <math>a</math> and <math>b</math> are relatively prime. What is <math>a+b+c+d</math>?
  
[asy]
+
<asy>
 
size(6cm);
 
size(6cm);
 
filldraw(circle((0,0),2), gray(0.7));
 
filldraw(circle((0,0),2), gray(0.7));
Line 115: Line 192:
 
filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0));
 
filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0));
 
dot((-3,-1));
 
dot((-3,-1));
label("<math>A</math>",(-3,-1),S);
+
label("$A$",(-3,-1),S);
 
dot((-2,0));
 
dot((-2,0));
label("<math>E</math>",(-2,0),NW);
+
label("$E$",(-2,0),NW);
 
dot((-1,-1));
 
dot((-1,-1));
label("<math>B</math>",(-1,-1),S);
+
label("$B$",(-1,-1),S);
 
dot((0,0));
 
dot((0,0));
label("<math>F</math>",(0,0),N);
+
label("$F$",(0,0),N);
 
dot((1,-1));
 
dot((1,-1));
label("<math>C</math>",(1,-1), S);
+
label("$C$",(1,-1), S);
 
dot((2,0));
 
dot((2,0));
label("<math>G</math>", (2,0),NE);
+
label("$G$", (2,0),NE);
 
dot((3,-1));
 
dot((3,-1));
label("<math>D</math>", (3,-1), S);
+
label("$D$", (3,-1), S);
[/asy]
+
</asy>
 
<math>\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17</math>
 
<math>\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17</math>
  
Line 135: Line 212:
 
==Problem 16==
 
==Problem 16==
  
There are lily pads in a row numbered 0 to 11, in that order. There are predators on lily pads 3 and 6, and a morsel of food on lily pad 10. Fiona the frog starts on pad 0, and from any given lily pad, has a <math>\tfrac{1}{2}</math> chance to hop to the next pad, and an equal chance to jump 2 pads. What is the probability that Fiona reaches pad 10 without landing on either pad 3 or pad 6?
+
There are lily pads in a row numbered <math>0</math> to <math>11</math>, in that order. There are predators on lily pads <math>3</math> and <math>6</math>, and a morsel of food on lily pad <math>10</math>. Fiona the frog starts on pad <math>0</math>, and from any given lily pad, has a <math>\frac{1}{2}</math> chance to hop to the next pad, and an equal chance to jump <math>2</math> pads. What is the probability that Fiona reaches pad <math>10</math> without landing on either pad <math>3</math> or pad <math>6</math>?
  
 
<math>\textbf{(A) } \frac{15}{256} \qquad \textbf{(B) } \frac{1}{16} \qquad \textbf{(C) } \frac{15}{128}\qquad \textbf{(D) } \frac{1}{8} \qquad \textbf{(E) } \frac14</math>
 
<math>\textbf{(A) } \frac{15}{256} \qquad \textbf{(B) } \frac{1}{16} \qquad \textbf{(C) } \frac{15}{128}\qquad \textbf{(D) } \frac{1}{8} \qquad \textbf{(E) } \frac14</math>
Line 159: Line 236:
 
==Problem 19==
 
==Problem 19==
  
There are lily pads in a row numbered 0 to 11, in that order. There are predators on lily pads 3 and 6, and a morsel of food on lily pad 10. Fiona the frog starts on pad 0, and from any given lily pad, has a <math>\tfrac{1}{2}</math> chance to hop to the next pad, and an equal chance to jump 2 pads. What is the probability that Fiona reaches pad 10 without landing on either pad 3 or pad 6?
+
Raashan, Sylvia, and Ted play the following game. Each person starts with <math>\$1</math>. A bell rings every <math>15</math> seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives <math>\$1</math> to that player. What is the probability that after the bell has rung <math>2019</math> times, each player will have <math>\$1</math>?
 +
(For example, Raashan and Ted may each decide to give <math>\$1</math> to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have <math>\$0</math>, Sylvia will have <math>\$2</math>, and Ted will have <math>\$1</math>, and that is the end of the first round of play. In the second round Rashaan has no money to give, but Sylvia and Ted might choose each other to give their <math> \$1</math> to, and the holdings will be the same at the end of the second round.)
  
<math>\textbf{(A) } \frac{15}{256} \qquad \textbf{(B) } \frac{1}{16} \qquad \textbf{(C) } \frac{15}{128}\qquad \textbf{(D) } \frac{1}{8} \qquad \textbf{(E) } \frac14</math>
+
<math>\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}</math>
  
 
[[2019 AMC 12B Problems/Problem 19|Solution]]
 
[[2019 AMC 12B Problems/Problem 19|Solution]]
Line 210: Line 288:
 
==Problem 25==
 
==Problem 25==
  
Let <math>ABCD</math> be a convex quadrilateral with <math>BC=2</math> and <math>CD=6.</math> Suppose that the centroids of <math>\triangle ABC,\triangle BCD,</math> and <math>\triangle ACD</math> form the vertices of an equilateral triangle. What is the maximum possible value of <math>ABCD</math>?
+
Let <math>ABCD</math> be a convex quadrilateral with <math>BC=2</math> and <math>CD=6.</math> Suppose that the centroids of <math>\triangle ABC,\triangle BCD,</math> and <math>\triangle ACD</math> form the vertices of an equilateral triangle. What is the maximum possible value of the area of <math>ABCD</math>?
  
 
<math>\textbf{(A) } 27 \qquad\textbf{(B) } 16\sqrt3 \qquad\textbf{(C) } 12+10\sqrt3 \qquad\textbf{(D) } 9+12\sqrt3 \qquad\textbf{(E) } 30</math>
 
<math>\textbf{(A) } 27 \qquad\textbf{(B) } 16\sqrt3 \qquad\textbf{(C) } 12+10\sqrt3 \qquad\textbf{(D) } 9+12\sqrt3 \qquad\textbf{(E) } 30</math>
  
 
[[2019 AMC 12B Problems/Problem 25|Solution]]
 
[[2019 AMC 12B Problems/Problem 25|Solution]]
 +
 +
==See also==
 +
{{AMC12 box|year=2019|ab=B|before=[[2019 AMC 12A Problems]]|after=[[2020 AMC 12A Problems]]}}
 +
{{MAA Notice}}

Latest revision as of 17:31, 16 June 2024

2019 AMC 12B (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the test if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Alicia had two containers. The first was $\tfrac{5}{6}$ full of water and the second was empty. She poured all the water from the first container into the second container, at which point the second container was $\tfrac{3}{4}$ full of water. What is the ratio of the volume of the first container to the volume of the second container?

$\textbf{(A) } \frac{5}{8} \qquad \textbf{(B) } \frac{4}{5} \qquad \textbf{(C) } \frac{7}{8} \qquad \textbf{(D) } \frac{9}{10} \qquad \textbf{(E) } \frac{11}{12}$

Solution

Problem 2

Consider the statement, "If $n$ is not prime, then $n-2$ is prime." Which of the following values of $n$ is a counterexample to this statement?

$\textbf{(A) } 11 \qquad \textbf{(B) } 15 \qquad \textbf{(C) } 19 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 27$

Solution

Problem 3

Which one of the following rigid transformations (isometries) maps the line segment $\overline{AB}$ onto the line segment $\overline{A'B'}$ so that the image of $A(-2,1)$ is $A'(2,-1)$ and the image of $B(-1,4)$ is $B'(1,-4)?$

$\textbf{(A) }$ reflection in the $y$-axis

$\textbf{(B) }$ counterclockwise rotation around the origin by $90^{\circ}$

$\textbf{(C) }$ translation by $3$ units to the right and $5$ units down

$\textbf{(D) }$ reflection in the $x$-axis

$\textbf{(E) }$ clockwise rotation about the origin by $180^{\circ}$

Solution

Problem 4

A positive integer $n$ satisfies the equation $(n+1)!+(n+2)!=440\cdot n!$. What is the sum of the digits of $n$?

$\textbf{(A) } 2 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 10\qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15$

Solution

Problem 5

Each piece of candy in a store costs a whole number of cents. Casper has exactly enough money to buy either $12$ pieces of red candy, $14$ pieces of green candy, $15$ pieces of blue candy, or $n$ pieces of purple candy. A piece of purple candy costs $20$ cents. What is the smallest possible value of $n$?

$\textbf{(A) } 18 \qquad \textbf{(B) } 21 \qquad \textbf{(C) } 24\qquad \textbf{(D) } 25 \qquad \textbf{(E) } 28$

Solution

Problem 6

In a given plane, points $A$ and $B$ are $10$ units apart. How many points $C$ are there in the plane such that the perimeter of $\triangle ABC$ is $50$ units and the area of $\triangle ABC$ is $100$ square units?

$\textbf{(A) }0\qquad\textbf{(B) }2\qquad\textbf{(C) }4\qquad\textbf{(D) }8\qquad\textbf{(E) }\text{infinitely many}$

Solution

Problem 7

What is the sum of all real numbers $x$ for which the median of the numbers $4,6,8,17,$ and $x$ is equal to the mean of those five numbers?

$\textbf{(A) } -5 \qquad\textbf{(B) } 0 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } \frac{15}{4} \qquad\textbf{(E) } \frac{35}{4}$

Solution

Problem 8

Let $f(x) = x^{2}(1-x)^{2}$. What is the value of the sum

\[f \left(\frac{1}{2019} \right)-f  \left(\frac{2}{2019} \right)+f \left(\frac{3}{2019} \right)-f \left(\frac{4}{2019} \right)+\cdots + f \left(\frac{2017}{2019} \right) - f \left(\frac{2018}{2019} \right)?\]

$\textbf{(A) }0\qquad\textbf{(B) }\frac{1}{2019^{4}}\qquad\textbf{(C) }\frac{2018^{2}}{2019^{4}}\qquad\textbf{(D) }\frac{2020^{2}}{2019^{4}}\qquad\textbf{(E) }1$

Solution

Problem 9

For how many integral values of $x$ can a triangle of positive area be formed having side lengths $\log_{2} x, \log_{4} x, 3$?

$\textbf{(A) } 57\qquad \textbf{(B) } 59\qquad \textbf{(C) } 61\qquad \textbf{(D) } 62\qquad \textbf{(E) } 63$

Solution

Problem 10

The figure below is a map showing $12$ cities and $17$ roads connecting certain pairs of cities. Paula wishes to travel along exactly $13$ of those roads, starting at city $A$ and ending at city $L,$ without traveling along any portion of a road more than once. (Paula is allowed to visit a city more than once.)

[asy] import olympiad; unitsize(50); for (int i = 0; i < 3; ++i) { for (int j = 0; j < 4; ++j) { pair A = (j,i); dot(A);  } } for (int i = 0; i < 3; ++i) { for (int j = 0; j < 4; ++j) { if (j != 3) { draw((j,i)--(j+1,i)); } if (i != 2) { draw((j,i)--(j,i+1)); } } } label("$A$", (0,2), W);  label("$L$", (3,0), E);  [/asy]

How many different routes can Paula take?

$\textbf{(A) } 0 \qquad\textbf{(B) } 1 \qquad\textbf{(C) } 2 \qquad\textbf{(D) } 3\qquad\textbf{(E) } 4$

Solution

Problem 11

How many unordered pairs of edges of a given cube determine a plane?

$\textbf{(A) } 12 \qquad \textbf{(B) } 28 \qquad \textbf{(C) } 36\qquad \textbf{(D) } 42 \qquad \textbf{(E) } 66$

Solution

Problem 12

Right triangle $ACD$ with right angle at $C$ is constructed outwards on the hypotenuse $\overline{AC}$ of isosceles right triangle $ABC$ with leg length $1$, as shown, so that the two triangles have equal perimeters. What is $\sin(2\angle BAD)$? [asy]  /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(8.016233639805293cm);  real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */  pen dotstyle = black; /* point style */  real xmin = -4.001920114613276, xmax = 4.014313525192017, ymin = -2.552570341575814, ymax = 5.6249093771911145;  /* image dimensions */   draw((-1.6742337260757447,-1.)--(-1.6742337260757445,-0.6742337260757447)--(-2.,-0.6742337260757447)--(-2.,-1.)--cycle, linewidth(2.));  draw((-1.7696484586262846,2.7696484586262846)--(-1.5392969172525692,3.)--(-1.7696484586262846,3.2303515413737154)--(-2.,3.)--cycle, linewidth(2.));   /* draw figures */ draw((-2.,3.)--(-2.,-1.), linewidth(2.));  draw((-2.,-1.)--(2.,-1.), linewidth(2.));  draw((2.,-1.)--(-2.,3.), linewidth(2.));  draw((-0.6404058554606791,4.3595941445393205)--(-2.,3.), linewidth(2.));  draw((-0.6404058554606791,4.3595941445393205)--(2.,-1.), linewidth(2.));  label("$D$",(-0.9382446143428628,4.887784444795223),SE*labelscalefactor,fontsize(14));  label("$A$",(1.9411496528285788,-1.0783204767840298),SE*labelscalefactor,fontsize(14));  label("$B$",(-2.5046350956841272,-0.9861798602345433),SE*labelscalefactor,fontsize(14));  label("$C$",(-2.5737405580962416,3.5747806589650395),SE*labelscalefactor,fontsize(14));  label("$1$",(-2.665881174645728,1.2712652452278765),SE*labelscalefactor,fontsize(14));  label("$1$",(-0.3393306067712029,-1.3547423264324894),SE*labelscalefactor,fontsize(14));   /* dots and labels */ dot((-2.,3.),linewidth(4.pt) + dotstyle);  dot((-2.,-1.),linewidth(4.pt) + dotstyle);  dot((2.,-1.),linewidth(4.pt) + dotstyle);  dot((-0.6404058554606791,4.3595941445393205),linewidth(4.pt) + dotstyle);  clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);   /* end of picture */ [/asy]

$\textbf{(A) } \dfrac{1}{3}  \qquad\textbf{(B) } \dfrac{\sqrt{2}}{2} \qquad\textbf{(C) } \dfrac{3}{4} \qquad\textbf{(D) } \dfrac{7}{9} \qquad\textbf{(E) }  \dfrac{\sqrt{3}}{2}$

Solution

Problem 13

A red ball and a green ball are randomly and independently tossed into bins numbered with the positive integers so that for each ball, the probability that it is tossed into bin $k$ is $2^{-k}$ for $k = 1,2,3....$ What is the probability that the red ball is tossed into a higher-numbered bin than the green ball?

$\textbf{(A) } \frac{1}{4} \qquad\textbf{(B) } \frac{2}{7} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{3}{8} \qquad\textbf{(E) } \frac{3}{7}$

Solution

Problem 14

Let $S$ be the set of all positive integer divisors of $100,000.$ How many numbers are the product of two distinct elements of $S?$

$\textbf{(A) }98\qquad\textbf{(B) }100\qquad\textbf{(C) }117\qquad\textbf{(D) }119\qquad\textbf{(E) }121$

Solution

Problem 15

As shown in the figure, line segment $\overline{AD}$ is trisected by points $B$ and $C$ so that $AB=BC=CD=2.$ Three semicircles of radius $1,$ $\overarc{AEB},$ $\overarc{BFC},$ and $\overarc{CGD},$ have their diameters on $\overline{AD},$ and are tangent to line $EG$ at $E,F,$ and $G,$ respectively. A circle of radius $2$ has its center on $F.$ The area of the region inside the circle but outside the three semicircles, shaded in the figure, can be expressed in the form \[\frac{a}{b}\cdot\pi-\sqrt{c}+d,\]where $a,b,c,$ and $d$ are positive integers and $a$ and $b$ are relatively prime. What is $a+b+c+d$?

[asy] size(6cm); filldraw(circle((0,0),2), gray(0.7)); filldraw(arc((0,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((-2,-1),1,0,180) -- cycle, gray(1.0)); filldraw(arc((2,-1),1,0,180) -- cycle, gray(1.0)); dot((-3,-1)); label("$A$",(-3,-1),S); dot((-2,0)); label("$E$",(-2,0),NW); dot((-1,-1)); label("$B$",(-1,-1),S); dot((0,0)); label("$F$",(0,0),N); dot((1,-1)); label("$C$",(1,-1), S); dot((2,0)); label("$G$", (2,0),NE); dot((3,-1)); label("$D$", (3,-1), S); [/asy] $\textbf{(A) } 13 \qquad\textbf{(B) } 14 \qquad\textbf{(C) } 15 \qquad\textbf{(D) } 16\qquad\textbf{(E) } 17$

Solution

Problem 16

There are lily pads in a row numbered $0$ to $11$, in that order. There are predators on lily pads $3$ and $6$, and a morsel of food on lily pad $10$. Fiona the frog starts on pad $0$, and from any given lily pad, has a $\frac{1}{2}$ chance to hop to the next pad, and an equal chance to jump $2$ pads. What is the probability that Fiona reaches pad $10$ without landing on either pad $3$ or pad $6$?

$\textbf{(A) } \frac{15}{256} \qquad \textbf{(B) } \frac{1}{16} \qquad \textbf{(C) } \frac{15}{128}\qquad \textbf{(D) } \frac{1}{8} \qquad \textbf{(E) } \frac14$

Solution

Problem 17

How many nonzero complex numbers $z$ have the property that $0, z,$ and $z^3,$ when represented by points in the complex plane, are the three distinct vertices of an equilateral triangle?

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }\text{infinitely many}$

Solution

Problem 18

Square pyramid $ABCDE$ has base $ABCD,$ which measures $3$ cm on a side, and altitude $\overline{AE}$ perpendicular to the base$,$ which measures $6$ cm. Point $P$ lies on $\overline{BE},$ one third of the way from $B$ to $E;$ point $Q$ lies on $\overline{DE},$ one third of the way from $D$ to $E;$ and point $R$ lies on $\overline{CE},$ two thirds of the way from $C$ to $E.$ What is the area, in square centimeters, of $\triangle PQR?$

$\textbf{(A) } \frac{3\sqrt2}{2} \qquad\textbf{(B) } \frac{3\sqrt3}{2} \qquad\textbf{(C) } 2\sqrt2 \qquad\textbf{(D) } 2\sqrt3 \qquad\textbf{(E) } 3\sqrt2$

Solution

Problem 19

Raashan, Sylvia, and Ted play the following game. Each person starts with $$1$. A bell rings every $15$ seconds, at which time each of the players who currently have money simultaneously chooses one of the other two players independently and at random and gives $$1$ to that player. What is the probability that after the bell has rung $2019$ times, each player will have $$1$? (For example, Raashan and Ted may each decide to give $$1$ to Sylvia, and Sylvia may decide to give her dollar to Ted, at which point Raashan will have $$0$, Sylvia will have $$2$, and Ted will have $$1$, and that is the end of the first round of play. In the second round Rashaan has no money to give, but Sylvia and Ted might choose each other to give their $$1$ to, and the holdings will be the same at the end of the second round.)

$\textbf{(A) } \frac{1}{7} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{3} \qquad\textbf{(D) } \frac{1}{2} \qquad\textbf{(E) } \frac{2}{3}$

Solution

Problem 20

Points $A(6,13)$ and $B(12,11)$ lie on circle $\omega$ in the plane. Suppose that the tangent lines to $\omega$ at $A$ and $B$ intersect at a point on the $x$-axis. What is the area of $\omega$?

$\textbf{(A) }\frac{83\pi}{8}\qquad\textbf{(B) }\frac{21\pi}{2}\qquad\textbf{(C) } \frac{85\pi}{8}\qquad\textbf{(D) }\frac{43\pi}{4}\qquad\textbf{(E) }\frac{87\pi}{8}$

Solution

Problem 21

How many quadratic polynomials with real coefficients are there such that the set of roots equals the set of coefficients? (For clarification: If the polynomial is $ax^2+bx+c,a\neq 0,$ and the roots are $r$ and $s,$ then the requirement is that $\{a,b,c\}=\{r,s\}$.)

$\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } \text{infinitely many}$

Solution

Problem 22

Define a sequence recursively by $x_0=5$ and \[x_{n+1}=\frac{x_n^2+5x_n+4}{x_n+6}\]for all nonnegative integers $n.$ Let $m$ be the least positive integer such that \[x_m\leq 4+\frac{1}{2^{20}}.\]In which of the following intervals does $m$ lie?

$\textbf{(A) } [9,26] \qquad\textbf{(B) } [27,80] \qquad\textbf{(C) } [81,242]\qquad\textbf{(D) } [243,728] \qquad\textbf{(E) } [729,\infty]$

Solution

Problem 23

How many sequences of $0$s and $1$s of length $19$ are there that begin with a $0$, end with a $0$, contain no two consecutive $0$s, and contain no three consecutive $1$s?

$\textbf{(A) }55\qquad\textbf{(B) }60\qquad\textbf{(C) }65\qquad\textbf{(D) }70\qquad\textbf{(E) }75$

Solution

Problem 24

Let $\omega=-\tfrac{1}{2}+\tfrac{1}{2}i\sqrt3.$ Let $S$ denote all points in the complex plane of the form $a+b\omega+c\omega^2,$ where $0\leq a \leq 1,0\leq b\leq 1,$ and $0\leq c\leq 1.$ What is the area of $S$?

$\textbf{(A) } \frac{1}{2}\sqrt3 \qquad\textbf{(B) } \frac{3}{4}\sqrt3 \qquad\textbf{(C) } \frac{3}{2}\sqrt3\qquad\textbf{(D) } \frac{1}{2}\pi\sqrt3 \qquad\textbf{(E) } \pi$

Solution

Problem 25

Let $ABCD$ be a convex quadrilateral with $BC=2$ and $CD=6.$ Suppose that the centroids of $\triangle ABC,\triangle BCD,$ and $\triangle ACD$ form the vertices of an equilateral triangle. What is the maximum possible value of the area of $ABCD$?

$\textbf{(A) } 27 \qquad\textbf{(B) } 16\sqrt3 \qquad\textbf{(C) } 12+10\sqrt3 \qquad\textbf{(D) } 9+12\sqrt3 \qquad\textbf{(E) } 30$

Solution

See also

2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
2019 AMC 12A Problems
Followed by
2020 AMC 12A Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png